K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ΔBAC vuông cân tại A nên AB=AC=5cm

ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(BC=\sqrt{5^2+5^2}=5\sqrt{2}\left(cm\right)\)

20 tháng 3

ΔBAC vuông cân tại A nên AB=AC=5cm

BC là cạnh huyền
Áp dụng định lý Pytago ta có :
BC2= AB2+ AC2

BC2 = 25+25=50
BC = 5 \(\sqrt{ }\)
2(cm)

25 tháng 2 2022

-Xét △ABC có: BD, CE lần lượt là các đường phân giác (gt)

\(\Rightarrow\dfrac{BE}{AE}=\dfrac{BC}{AC};\dfrac{DC}{AD}=\dfrac{BC}{AB}\) (định lí đường phân giác trong tam giác)

Mà \(AB=AC\) (△ABC cân tại A)

\(\Rightarrow\dfrac{BE}{AE}=\dfrac{DC}{AD}\) nên DE//BC (định lí Ta-let đảo)

\(\Rightarrow\dfrac{AB}{AE}=\dfrac{BC}{DE}=\dfrac{8}{5}\) (định lí Ta-let)

\(\Rightarrow\dfrac{AB}{AE}-1=\dfrac{8}{5}-1\)

\(\Rightarrow\dfrac{BE}{AE}=\dfrac{3}{5}\) mà \(\dfrac{BE}{AE}=\dfrac{BC}{AC}\left(cmt\right)\)

\(\Rightarrow\dfrac{BC}{AC}=\dfrac{3}{5}\)

\(\Rightarrow AC=AB=\dfrac{5.BC}{3}=\dfrac{5.8}{3}=\dfrac{40}{3}\left(cm\right)\)

 

a) Áp dụng định lí Pytago vào ΔABC vuông tại A,ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Vậy: BC=10cm

20 tháng 3 2021

Mấy câu kia thì s 

 

 

 

28 tháng 2 2022

a Tam giác ABC cân tại A => AB=AC=15

Tia p/g BM

=> Theo tính chất đương p/g ta có

AMAB=MCBCAMAB=MCBC

MC=AC-AM

=>AMAB=AC−AMBCAMAB=AC−AMBC

AM15=15−AM10AM15=15−AM10

=> AM= 9

=> MC=AC-AM=15-9=6

BM vuông góc BN

=> BM là tia p/g góc ngoài tại B

=>NCNA=BCBANCNA=BCBA

=> NC.BA=BC.NA

NC.BA-BC.NA=0

NC.BA-BC(AC+CN)= 0

=> NC.15-10(15+CN)=0

=> NC=30

28 tháng 2 2022

hơi rối

AH
Akai Haruma
Giáo viên
8 tháng 2 2023

Lời giải:

Áp dụng tính chất tia phân giác:

$\frac{AD}{DC}=\frac{AB}{BC}$

$\Leftrightarrow \frac{3}{DC}=\frac{AB}{5}$

$\Rightarrow 15=AB.DC=AB(AC-AD)=AB(AC-3)(1)$

Mà: $AB^2+AC^2=BC^2=25(2)$

Từ $(1); (2)\Rightarrow  (\frac{15}{AC-3})^2=AB^2=25-AC^2$
$\Leftrightarrow AC^4-6AC^3-16AC^2+150AC=0$

$\Leftrightarrow AC^3-6AC^2-16AC+150=0$

PT giải ra số khá xấu. Bạn xem lại đề.

27 tháng 5 2019

Bài tập tổng hợp chương 3 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Áp dụng tính chất đường phân giác BD của tam giác

ABC, ta có:

Bài tập tổng hợp chương 3 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án với t > 0

Áp dụng định lý Py – ta – go ta có:

B C 2 = A C 2 + A B 2  hay ( 5 t ) 2 = 9 2 + ( 4 t ) 2 ⇔ ( 3 t ) 2 = 9 2 ⇒ t = 3 (vì t > 0 )

Khi đó: AB = 12cm, BC = 15cm

16 tháng 10 2017

Bài tập: Tính chất đường phân giác của tam giác | Lý thuyết và Bài tập Toán 8 có đáp án

Áp dụng tính chất đường phân giác BD của tam giác ABC, ta có:

Bài tập: Tính chất đường phân giác của tam giác | Lý thuyết và Bài tập Toán 8 có đáp ánvới t > 0

Áp dụng định lý Py – ta – go ta có:

Khi đó: AB = 12cm, BC = 15cm

a: Xét ΔABC có BM là phân giác

nên AM/AB=CM/BC

=>AM/15=CM/10

=>AM/3=CM/2=(AM+CM)/(3+2)=15/5=3

=>AM=9cm; CM=6cm

b: BM vuông góc BN

=>BN là phân giác góc ngoài tại B

=>NC/NA=BC/BA

=>NC/(NC+15)=10/15=2/3

=>3NC=2NC+30

=>NC=30cm

16 tháng 1 2016

GIẢI THẾ NÀO?

 

16 tháng 1 2016

SORRY. MÌNH THIẾU. BD LÀ PHÂN GIÁC CỦA GÓC B. TÍNH DC