Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a) sáng giải
b) \(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\ge\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}=\frac{4^2}{2}=8>4\) vô nghiệm
a) ĐK: \(x,y\ne-1\)
\(\hept{\begin{cases}x^2+y^2+x+y=\left(x+1\right)\left(y+1\right)\left(1\right)\\\left(\frac{x}{y+1}\right)^2+\left(\frac{y}{x+1}\right)^2=1\left(2\right)\end{cases}}\)
(1) \(\Leftrightarrow\)\(\frac{x^2+x}{\left(x+1\right)\left(y+1\right)}+\frac{y^2+y}{\left(x+1\right)\left(y+1\right)}=1\)
\(\Leftrightarrow\)\(\frac{x\left(x+1\right)}{\left(x+1\right)\left(y+1\right)}+\frac{y\left(y+1\right)}{\left(x+1\right)\left(y+1\right)}=1\)
\(\Leftrightarrow\)\(\frac{x}{y+1}+\frac{y}{x+1}=1\) (3)
(2) \(\Leftrightarrow\)\(\left(\frac{x}{y+1}+\frac{y}{x+1}\right)^2-\frac{2xy}{\left(x+1\right)\left(y+1\right)}=1\)
\(\Leftrightarrow\)\(2xy=\left(x+1\right)\left(y+1\right)\)
Lại có: \(\left(\frac{x}{y+1}\right)^2+\left(\frac{y}{x+1}\right)^2\ge2\sqrt{\left(\frac{xy}{\left(x+1\right)\left(y+1\right)}\right)^2}=2\sqrt{\frac{1}{4}}=1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\frac{x}{y+1}=\frac{y}{x+1}\)
\(\Rightarrow\)\(\hept{\begin{cases}\frac{2x}{y+1}=1\\2\left(\frac{x}{y+1}\right)^2=1\end{cases}\Leftrightarrow\left(\frac{x}{y+1}\right)^2-\frac{x}{y+1}=0\Leftrightarrow\frac{x}{y+1}\left(\frac{x}{y+1}-1\right)=0}\)
\(\Rightarrow\)\(\orbr{\begin{cases}\frac{x}{y+1}=0\\\frac{x}{y+1}-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0;y=1\\x=y+1\end{cases}\Leftrightarrow}x=y+1}\)
Thay x=y+1 vào (3) ta được: \(\frac{y}{x+1}=0\)\(\Leftrightarrow\)\(y=0\)\(\Rightarrow\)\(x=1\) ( tương tự với y ta cũng được x=0;y=1 )
tập nghiệm của pt \(\left(x,y\right)=\left\{\left(0;1\right),\left(1;0\right)\right\}\)
b) ĐK: \(x,y\ne0\) còn cách khác là dùng cosi nhé, VD: \(\hept{\begin{cases}x+\frac{1}{x}+y+\frac{1}{y}=4\left(1\right)\\\left(x+\frac{1}{2}\right)^2+\left(y+\frac{1}{y}\right)^2=4\left(2\right)\end{cases}}\)
lấy (1) + (2) và cộng 2 vào 2 vế của pt mới ta được:
\(10=a^2+1+b^2+1+\left(a+b\right)\ge2\sqrt{a^2}+2\sqrt{a^2}+4=12\)
\(\Rightarrow\)\(10\ge12\) (vô lí) => hpt vô nghiệm
Có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{3}\)
\(\Rightarrow\frac{xy+yz+zx}{xyz}=\frac{1}{3}\)
\(\Rightarrow3.\left(xy+yz+zx\right)=xyz\)(1)
Lại có: \(x+y+z=3\)
\(\Rightarrow\left(x+y+z\right)^2=3^2\)
\(\Rightarrow x^2+y^2+z^2+2xy+2yz+2zx=9\)
Mà: \(x^2+y^2+z^2=17\)
\(\Rightarrow17+2xy+2yz+2xz=9\)
\(\Rightarrow2xy+2yz+2xz=-8\)
\(\Rightarrow xy+yz+zx=-4\)(2)
Thay (2) vào (1) ta có:
\(3.\left(-4\right)=xyz\)
\(xyz=-12\)
Vậy \(xyz=-12\)
Tham khảo nhé~
Từ hệ phương trình suy ra: \(4.14+\frac{14}{y}=1\)
\(\Rightarrow\frac{14}{y}=-55\Rightarrow y=\frac{-14}{55}\)
Thay y vào phương trình \(\frac{1}{x}+\frac{1}{y}=14\)giải được \(x=\frac{14}{251}\)
Vậy hệ có 1 nghiệm \(\left(\frac{14}{251};\frac{-14}{55}\right)\)
dk \(x,y\ne0\)
thay \(\frac{1}{x}+\frac{1}{y}=14\) vao pt 2 ta duoc
\(4.14+\frac{14}{y}=1\Leftrightarrow56+\frac{14}{y}=1\Leftrightarrow y=\frac{-14}{55}\)
thay \(y=\frac{-14}{55}\)
vao pt 1 \(\Rightarrow\frac{1}{x}-\frac{55}{14}=14\Leftrightarrow x=\frac{14}{251}\)tmdk
thu lai ta thay thoa man
vay \(\left\{x;y\right\}=\left\{\frac{14}{251};\frac{-14}{55}\right\}\)
Ta co:
\(\frac{x}{3}+\frac{y}{2}=\frac{1}{6}\)\(\Rightarrow\frac{2x}{6}+\frac{3y}{6}=\frac{1}{6}\)\(\Rightarrow2x+3y=1\Rightarrow x=\frac{1-3y}{2}\)
\(\Rightarrow\frac{3.\frac{1-3y}{2}}{4}-\frac{\frac{1-3y}{2}}{6}=2\)
\(\Rightarrow\frac{1-3y}{2}.\frac{3}{4}-\frac{1-3y}{2}.\frac{1}{6}=2\)
\(\Rightarrow\frac{1-3y}{2}.\left(\frac{3}{4}-\frac{1}{6}\right)=2\)
\(\Rightarrow\frac{1-3y}{2}.\frac{7}{12}=2\)
\(\Rightarrow\frac{1-3y}{2}=\frac{24}{7}\)
\(\Rightarrow7\left(1-3y\right)=2.24\)
\(\Rightarrow7-21y=48\)
\(\Rightarrow21y=-41\)
\(\Rightarrow y\approx-1,9\)
\(\Rightarrow x=\frac{1-3.\left(-1,9\right)}{2}=3.35\)
Đặt \(\hept{\begin{cases}x-1=a\\y+2=b\end{cases}}\) ta có :
\(pt\Leftrightarrow\hept{\begin{cases}\frac{8}{a}+\frac{15}{b}=1\\\frac{1}{a}+\frac{1}{b}=\frac{1}{12}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{8}{a}+\frac{15}{b}=1\\\frac{8}{a}+\frac{8}{b}=\frac{2}{3}\end{cases}}\Leftrightarrow\left(\frac{8}{a}+\frac{15}{b}\right)-\left(\frac{8}{a}+\frac{8}{b}\right)=\frac{1}{3}}\)
\(\Leftrightarrow\frac{7}{b}=\frac{1}{3}\Rightarrow b=21\Rightarrow\frac{1}{a}+\frac{1}{21}=\frac{1}{12}\Leftrightarrow\frac{1}{a}=\frac{1}{28}\Rightarrow a=28\)
\(\Rightarrow\hept{\begin{cases}a=x-1=28\\b=y+2=21\end{cases}\Rightarrow\hept{\begin{cases}x=29\\y=19\end{cases}}}\)