K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

trên google có đầy rùi đăng lạm gì nữa

1 tháng 9 2017

Số cây cam là:
120 : ( 2 + 3 ) x 2 = 48 (cây)
Số cây xoài là:
( 1 + 5 ) = 20 ( cây )
Số cây chanh là:
120 - ( 48 + 20 ) = 52 ( cây )
               Đáp số : cam : 48 cây
                            xoài : 20 cây
                            chanh : 52 cây.

ai trên 10 điểm thì mình nha

1 tháng 9 2017

Số cây cam là:
120 : ( 2 + 3 ) x 2 = 48 (cây)
Số cây xoài là:
( 1 + 5 ) = 20 ( cây )
Số cây chanh là:
120 - ( 48 + 20 ) = 52 ( cây )
               Đáp số : cam : 48 cây
                            xoài : 20 cây
                            chanh : 52 cây.

ai trên 10 điểm thì mình nha

9 tháng 7 2018

i kb vs tui ik

a: Xét (O) co

CM,CA là tiếp tuyên

=>CM=CA 

Xét (O) có

DM,DB là tiếp tuyến

=>DM=DB

CD=CM+MD

=>CD=CA+BD

b: Xet ΔACN và ΔDBN có

góc NAC=góc NDB

góc ANC=góc DNB

=>ΔACN đồng dạng vơi ΔDBN

=>AC/BD=AN/DN

=>CN/MD=AN/ND

=>MN/AC

 

17 tháng 8 2017

a, Từ CA, CM là tiếp tuyến của (O) chứng minh được A,C,M,O ∈ đường tròn bán kính  O C 2

b, Chứng minh OC,BM cùng vuông góc với AM . từ đó suy ra OC//BM

c,  S A C D B = A C + B D A B 2 = A D . A B 2

=>  S A C D B  nhỏ nhất khi CD có độ dài nhỏ nhất

Hay M nằm chính giữa cung AB

d, Từ tính chất hai giao tuyến => AC = CM và BM=MD, kết hợp với AC//BD

ta chứng minh được  C N N B = C M M D => MN//BD => MN ⊥ AB

a: góc EAO+góc EMO=180 độ

=>EAOM nội tiếp

b: góc AMB=1/2*sđ cung AB=90 độ

Xét (O) co

EM,EA là tiếptuyến

=>EM=EA

mà OM=OA

nên OE là trung trực của AM

=>OE vuông góc AM tại P

Xét (O) có

FM,FB là tiếptuyến

=>FM=FB

=>OF là trung trực của MB

=>OF vuông góc MB tại Q

góc MPO=góc MQO=góc PMQ=90 độ

=>MPOQ là hình chữ nhật

6 tháng 6 2016
Giúp mình đi mọi người
7 tháng 6 2016

Cô hướng dẫn nhé nguyen van vu :)

K

a. Ta có góc COD = COM + MOD = \(\frac{AOM}{2}+\frac{BOM}{2}=\frac{180}{2}=90^o\)

b. Dễ thấy E là trung điểm CD, O là trung điểm AB nên OE song song AC. Vậy OE vuông góc AB.

c. Gọi MH là đường thẳng vuông góc AB, Ta chứng minh BC, AD đều cắt MH tại trung điểm của nó.

Gọi I là giao của AM và BD. Đầu tiên chứng minh ID = DB. Thật vậy, góc MID=IMD (Cùng bằng cung AM/2)

nên ID =MD, mà MD=DB nên ID=DB.

Gọi K là giao của MH và AD.

Theo Talet , \(\frac{MK}{DI}=\frac{AK}{AD}=\frac{KH}{BD}\Rightarrow MK=KH\)

Tương tự giao điểm của BC với MH cũng là trung điểm MH.

Tóm lại N trùng K hay MN vuông góc AB.

a) Xét (O) có 

CM là tiếp tuyến có M là tiếp điểm(gt)

CA là tiếp tuyến có A là tiếp điểm(gt)

Do đó: CM=CA(Tính chất hai tiếp tuyến cắt nhau)

Xét (O) có 

DM là tiếp tuyến có M là tiếp điểm(gt)

DB là tiếp tuyến có B là tiếp điểm(gt)

Do đó: DB=DM(Tính chất hai tiếp tuyến cắt nhau)

Ta có: CD=CM+DM(M nằm giữa C và D)

mà CM=CA(cmt)

và DM=DB(cmt)

nên CD=CA+DB