Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) tam giác ABC vuông tại A
=> AB2 + AC2 = BC2 (định lý py-ta-go)
=> 92 + AC2 = 152
=> AC2 = 225 - 81
=> AC2 = 144 => AC = \(\sqrt{144}=12cm\)
t i c k đúng nhé
a) trong tam giác ABC có: AB < AC < BC ( 9 < 12 < 15)
=> góc C < góc B < góc A (định lý)
1. _ Xét Δ ABD vuông tại A và Δ EBD vuông tại E có
BD : cạnh chung
\(\widehat{B_1}=\widehat{B_2}\) ( gt)
⇒ Δ ABD = Δ EBD ( ch - gn )
2. Theo câu 1 ta có Δ ABD = Δ EBD
⇒ AB = EB ( 2 cạnh tương ứng )
_Xét Δ ABE có
\(\widehat{ABC}=60^o\) ( gt)
AB = EB ( cmt)
⇒ ΔABE là tam giác đều
3. _Xét ΔABC vuông tại A
⇒ \(\widehat{ABC}+\widehat{C}=90^o\) ( tính chất tam giác cân )
\(\Rightarrow\widehat{C}+60^o=90^o\)
\(\Rightarrow\widehat{C}=30^o\)
_ Xét Δ ABC vuông tại A có \(\widehat{C}=30^o\)
⇒ AB = \(\frac{1}{2}\) BC
Mà AB = 5 cm
\(\Rightarrow\frac{1}{2}BC=5\)
\(\Rightarrow BC=5.2=10\) ( cm)
Vậy BC = 10 ( cm)
@@ Học tốt
Chiyuki Fujito
a) Xét \(\Delta ABC\) vuông tại \(A\left(gt\right)\) có:
\(AB^2+AC^2=BC^2\) (định lí Py - ta - go).
=> \(5^2+AC^2=10^2\)
=> \(AC^2=10^2-5^2\)
=> \(AC^2=100-25\)
=> \(AC^2=75\)
=> \(AC=\sqrt{75}\)
=> \(AC=5\sqrt{3}\left(cm\right)\) (vì \(AC>0\)).
b) Xét 2 \(\Delta\) vuông \(ABD\) và \(EBD\) có:
\(\widehat{BAD}=\widehat{BED}=90^0\left(gt\right)\)
Cạnh BD chung
\(\widehat{B_1}=\widehat{B_2}\) (vì \(BD\) là tia phân giác của \(\widehat{ABC}\))
=> \(\Delta ABD=\Delta EBD\) (cạnh huyền - góc nhọn).
=> \(\left\{{}\begin{matrix}AB=EB\\AD=ED\end{matrix}\right.\) (các cạnh tương ứng).
=> \(B\) và \(D\) thuộc đường trung trực của \(AE.\)
=> \(BD\) là đường trung trực của \(AE.\)
=> \(BD\perp AE\) (định nghĩa đường trung trực).
Hay \(AE\perp BD.\)
c) Ta có:
\(\frac{1}{2}BC=\frac{1}{2}.10=\frac{10}{2}=5cm.\)
Mà \(AB=5cm\left(gt\right)\)
=> \(AB=\frac{1}{2}BC.\)
Mà \(AB=EB\left(cmt\right)\)
=> \(EB=\frac{1}{2}BC.\)
=> \(E\) là trung điểm của \(BC.\)
=> \(EC=\frac{1}{2}BC\) (tính chất trung điểm).
Mà \(AB=\frac{1}{2}BC\left(cmt\right).\)
=> \(AB=EC\) (1).
+ Xét 2 \(\Delta\) vuông \(AFD\) và \(ECD\) có:
\(\widehat{FAD}=\widehat{CED}=90^0\left(gt\right)\)
\(AD=ED\left(cmt\right)\)
\(\widehat{ADF}=\widehat{EDC}\) (vì 2 góc đối đỉnh)
=> \(\Delta AFD=\Delta ECD\) (cạnh góc vuông - góc nhọn kề).
=> \(AF=EC\) (2 cạnh tương ứng) (2).
Từ (1) và (2) => \(AB=AF.\)
+ Xét 2 \(\Delta\) vuông \(ABC\) và \(AFC\) có:
\(\widehat{BAC}=\widehat{FAC}=90^0\left(gt\right)\)
\(AB=AF\left(cmt\right)\)
Cạnh AC chung
=> \(\Delta ABC=\Delta AFC\) (2 cạnh góc vuông tương ứng bằng nhau).
Chúc bạn học tốt!
a: AC=8cm
b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
góc ABD=góc EBD
Do đó: ΔABD=ΔEBD
Suy ra: BA=BE và DA=DE
=>BD là đường trung trực của AE
hay BD vuông góc với AE
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: ΔBAD=ΔBED
=>BA=BE và DA=DE
=>BD là trung trực của AE
c: Xét ΔDAK vuông tạiA và ΔDEC vuông tại E có
DA=DE
góc ADK=góc EDC
=>ΔDAK=ΔDEC
=>DK=DC
=>ΔDKC cân tại D
a,Xét tam giác vuông ABD và tam giác vuông EBD có:
Góc ABD=góc EBD
Cạnh BD chung
Nên tam giác ABD=tam giác EBD(cạnh huyền-góc nhọn)
b,Từ A ta kẻ ,một đoạn thẳng từ đỉnh A tới đỉnh E
Theo câu a, tam giác ABD=tam giác EBD nên cạnh BA=cạnh BE
Do đó tam giác ABE cân tại A
c,Tho quan hệ đường xiên và đường vuông góc trong 1 tam giác thì đường xiên lớn hơn đường vuông góc tương ứng nên BC>BA
a) Xét Δ𝐴𝐵𝐷ΔABD và Δ𝐸𝐵𝐷ΔEBD, có:
𝐵𝐴𝐷^=𝐵𝐸𝐷^=90∘BAD=BED=90∘
𝐵𝐷BD là cạnh huyền chung.
𝐴𝐵𝐷^=𝐸𝐵𝐷^ABD=EBD
Vậy Δ𝐴𝐵𝐷=Δ𝐸𝐵𝐷ΔABD=ΔEBD (cạnh huyền - góc nhọn)
b) Vi Δ𝐴𝐵𝐷=Δ𝐸𝐵𝐷(𝑐𝑚𝑡)ΔABD=ΔEBD(cmt)
Suy ra 𝐴𝐵=𝐸𝐵AB=EB
Do đó : Δ𝐴𝐵𝐸ΔABE cân tại 𝐵B.
c) Ta có 𝐵𝐴BA là đường vuông góc, 𝐵𝐶BC là đường xiên.
Suy ra 𝐵𝐴<𝐵𝐶BA<BC.