Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài, ta có:
\(3x=4y;3y=4z\) hay \(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{4}\) và 2x+3y-5z=55
\(\Rightarrow\frac{x}{9}=\frac{y}{12};\frac{y}{12}=\frac{z}{16}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{16}=\frac{2x+3y-2z}{2.9+3.12-2.16}=\frac{55}{22}=\frac{5}{2}\)
- \(\frac{x}{9}=\frac{5}{2}.9=\frac{45}{2}\)
- \(\frac{y}{12}=\frac{5}{2}.12=30\)
- \(\frac{z}{16}=\frac{5}{2}.16=40\)
Vậy \(x=\frac{45}{2},y=30,z=40\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{2x+y+2z}{x+y+3z}=\frac{2x+2y+z}{3x+y+z}=\frac{x+2y+2z}{x+3y+z}=\frac{2x+y+2z+2x+2y+z+x+2y+2z}{x+y+3z+3x+y+z+x+3y+z}=\frac{5x+5y+5z}{5x+5y+5z}=1\)
Vậy x=y=z
a.
$7x-2y=5x-3y$
$\Leftrightarrow 2x=-y$. Thay vào điều kiện số 2 ta có:
$-y+3y=20$
$2y=20$
$\Rightarrow y=10$.
$x=\frac{-y}{2}=\frac{-10}{2}=-5$
b.
$2x=3y\Rightarrow \frac{x}{3}=\frac{y}{2}$
$3y=4z-2y\Rightarrow 5y=4z\Rightarrow \frac{y}{4}=\frac{z}{5}$
$\Rightarrow \frac{x}{6}=\frac{y}{4}=\frac{z}{5}$
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{6+4+5}=\frac{45}{15}=3$
$\Rightarrow x=6.3=18; y=4.3=12; z=5.3=15$
\(\Rightarrow\frac{x}{2}=\frac{y}{3};\frac{z}{2}=x\Rightarrow\frac{x}{2}=\frac{y}{3};\frac{z}{4}=\frac{x}{2}\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) và 3x+y-4z=63
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{3x+y-4z}{6+3-16}=\frac{63}{-7}=-9\)
\(\cdot\frac{x}{2}=-9\Rightarrow x=-9\cdot2=-18\)
\(\cdot\frac{y}{3}=-9\Rightarrow y=-9\cdot3=-27\)
\(\cdot\frac{z}{4}=-9\Rightarrow z=-9\cdot4=-36\)
Vậy x=-18; y=-27;z=-36
\(3x=2y\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{2x}{4}=\dfrac{3y}{9}\) \(\left(1\right)\)
\(y=2z\Rightarrow\dfrac{3y}{3}=2z\Rightarrow\dfrac{3y}{9}=\dfrac{2z}{3}\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\)
\(\Rightarrow\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{2z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau
ta có: \(\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{2z}{3}=\dfrac{2x+3y-2z}{4+9-3}=\dfrac{40}{10}=4\)
+\(\dfrac{2x}{4}=4\Rightarrow2x=16\Rightarrow x=8\)
+\(\dfrac{3y}{9}=4\Rightarrow3y=36\Rightarrow y=12\)
+\(\dfrac{2z}{3}=4\Rightarrow2z=12\Rightarrow z=6\)
Vậy \(x=8;y=12;z=6\)