Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x-2xy+y=0
=> x-(2xy-y)=0
=> x- y(2x-1)=0
=> 2x-2y(2x-1)=0
=>( 2x-1) -2y(2x-1)=-1
=> (2x-1)(1-2y)=-1
=> ( 2x-1 ; 1-2y ) = ( -1 ;1 ) ; (1;-1 )
=> (x;y)=( 0 ; 0 ) ; ( 1;1)
b) x2 - 2y2 = 1
=> x2 - 1 = 2y2 => (x - 1).(x + 1) = 2y2 (1)
Xét tổng (x - 1) + (x + 1) = 2x là số chẵn => x - 1 ; x + 1 cùng tích chẵn hoặc lẻ. (2)
Từ (1), (2) => x - 1; x + 1 cùng là số chẵn.
=> (x - 1).(x + 1) là số chẵn <=> 2y2 là số chẵn <=> y2 là số chẵn.
Mà y là số nguyên tố => y = 2. Khi đó x = 1 + 2.22 = 9 => x = 3
Vậy x = 3 và y = 2
x2-2y2=1
=>x2=2y2+1
=> x2 lẻ=>x=2k+1
=>4k2+4k+1=1+2y2=>2y2 chia hết cho 4=> y=2
=>x=3
Tạm bổ nguyên tố đi
x phải chẵn=>x=2z+1
<=> 4z^2+4z+1-2y^2=1
,y phải chẵn ok dùng ĐK nguyên tố cho vào=> y=2 duy nhất
x^2-8=1=> x^2=9=> x=3
KL x=3, y=2
x^2-2.y^2=1
=>x^2-1=2y^2
=>(x-1)(x+1)=2y^2
Xét tổng (x-1)+(x+1)=2x , là số chẵn
=> x-1 và x+1 cùng chẵn hoặc cùng lẻ
Mà 2y^2 là số chẵn
=> x-1 và x+1 cùng chẵn
=>y^2 là số chẵn
=> y là số chẵn
Mà y là số nguyên tố =>y=2
=> x^2=1+2.2^2=9 => x=3
Vậy y=2 ; x=3
ta có : x^2−2y^2=1⇔x^2=2y^2+1x^2−2y^2=1⇔x2=2y2+1
vì 2y^2+12y^2+1 là số lẻ => x là số lẻ
đặt x=2k+1, ta có: (2k+1)^2−2y^2=1⇔4k2+4k+1−2y^2=1⇔4k2+4k−2y^2=0⇔2k2+2k−y^2=0⇔2(k2+k)=y^2(2k+1)^2−2y^2=1⇔4k2+4k+1−2y^2=1⇔4k2+4k−2y^2=0⇔2k2+2k−y^2=0⇔2(k2+k)=y^2 vì 2(k2+k)^2(k2+k) là số chẵn => y là số chẵn mà y là số nguyên tố =>y=2
thay y=2 vàox^2−2y^2=1x^2−2y^2=1, ta có:
x2−2.22=1⇔x^2=9⇒x=3x^2−2.22=1⇔x2=9⇒x=3(thõa mãn)
vậy x=3 và y=2
\(x^2-2y^2=1\)
nếu cả x và y đều lẻ => \(x^2-2y^2=\)số chẵn mà 1 là số lẻ nên trong x;y phải có 1 số là chẵn :
Nếu x là số nguyên tố chẵn => x=2
= \(4-2y^2=1\) ( loại )
Nếu y là số nguyên tố chẵn => y=2
=> \(x^2-2.2^2=1\)
\(x^2-8=1\)
\(x^2=9\)
\(x^2=3^2\)
=> x=3
Vậy x=3 ; y=2
x phải là một số lẻ vì x chẵn Vế trái luôn chẵn (vế phải =1 lẻ)
vậy x=2n+1
x^2=4n^2+4n+1
2n^2+2n-y^2=0
2n(n+1)=y^2
n=2(n+1) vô lý
2n=n+1=> n=1
x=3
y=2
Một mảnh vườn hình chữ Nhật có tổng hai cạnh liền kề nhau là 22 m , chiều dài hơn chiều rộng 6m.tìm diện tích mảnh vườn đó
\(x^2-2y^2=1\) \(\left(1\right)\)
\(\Leftrightarrow x^2-1=2y^2\) \(\left(2\right)\)
Do \(2y^2⋮2\) nên \(x^2-1⋮2\)
\(\Rightarrow x\) là số lẻ \(\Rightarrow x=2k+1\left(k\inℤ\right)\)
\(\left(2\right)\Rightarrow\left(2k+1\right)^2-1=2y^2\)
\(\Leftrightarrow4k\left(k+1\right)=2y^2\)
\(\Leftrightarrow2k\left(k+1\right)=y^2\)
mà \(2k\left(k+1\right)⋮2\) \(\Rightarrow y^2⋮2\Rightarrow y⋮2\)
và \(y\) là số nguyên tố \(\Rightarrow y=2\)
\(\left(1\right)\Rightarrow x^2-2\cdot2^2=1\)
\(\Leftrightarrow x^2=9=3^2\)
Do \(x\) là số nguyên tố nên \(x=3\)
Vậy \(\left(x;y\right)=\left(3;2\right)\)