\(\dfrac{n+1}{n+2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2024

loading...

6 tháng 2 2024

A = \(\dfrac{n+1}{n+2}\) ( n ≠ -2)

Gọi ƯCLN(n + 1; n + 2) = d

Ta có: \(\left\{{}\begin{matrix}\left(n+1\right)⋮d\\\left(n+2\right)⋮d\end{matrix}\right.\)

      ⇒ ( (n + 2) - (n + 1) ) ⋮ d

           (n + 2 - n - 1) ⋮ d

                             1 ⋮ d

Vậy ƯCLN(n +1; n + 2) = 1

Hay A = \(\dfrac{n+1}{n+2}\) là phân số tối giản. 

7 tháng 3 2017

Ta có: \(\dfrac{23n^2-1}{35}\in Z\)

\(\Rightarrow23n^2-1=35k\left(k\in Z\right)\)

\(\Rightarrow23n^2=35k+1\)

Mà 35k + 1 chia cho 5 hoặc 7 đều dư 1 nên 23n2 chia cho 5 hoặc 7 đều dư 1

Hay n không chia hết cho 5, 7

Vậy \(\dfrac{n}{5},\dfrac{n}{7}\) là các phân số tối giản

24 tháng 1 2018

a, Gọi d = ƯCLN(n+1,2n+3) (d thuộc N*)

Ta có: \(\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)

\(\Rightarrow2n+3-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

=> d = 1

=> đpcm

b, Gọi d = ƯCLN(2n+3,4n+8) (d thuộc N*)

ta có: \(\left\{{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)

\(\Rightarrow4n+8-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\in\left\{1;2\right\}\)

Mà 2n + 3 là số lẻ

=> d = 1

=> đpcm

c, Gọi d = ƯCLN(3n+2,5n+3) (d thuộc N*)

Ta có: \(\left\{{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)

\(\Rightarrow15n+10-\left(15n+9\right)⋮d\)

\(\Rightarrow1⋮d\)

=> d = 1

=> đpcm

25 tháng 1 2018

, Gọi d = ƯCLN(n+1,2n+3) (d thuộc N*)

Ta có: ⎧⎨⎩n+1⋮d2n+3⋮d⇒⎧⎨⎩2n+2⋮d2n+3⋮d{n+1⋮d2n+3⋮d⇒{2n+2⋮d2n+3⋮d

⇒2n+3−(2n+2)⋮d⇒2n+3−(2n+2)⋮d

⇒1⋮d⇒1⋮d

=> d = 1

=> đpcm

b, Gọi d = ƯCLN(2n+3,4n+8) (d thuộc N*)

ta có: ⎧⎨⎩2n+3⋮d4n+8⋮d⇒⎧⎨⎩4n+6⋮d4n+8⋮d{2n+3⋮d4n+8⋮d⇒{4n+6⋮d4n+8⋮d

⇒4n+8−(4n+6)⋮d⇒4n+8−(4n+6)⋮d

⇒2⋮d⇒2⋮d

⇒d∈{1;2}⇒d∈{1;2}

Mà 2n + 3 là số lẻ

=> d = 1

=> đpcm

c, Gọi d = ƯCLN(3n+2,5n+3) (d thuộc N*)

Ta có: ⎧⎨⎩3n+2⋮d5n+3⋮d⇒⎧⎨⎩15n+10⋮d15n+9⋮d{3n+2⋮d5n+3⋮d⇒{15n+10⋮d15n+9⋮d

⇒15n+10−(15n+9)⋮d⇒15n+10−(15n+9)⋮d

⇒1⋮d⇒1⋮d

=> d = 1

=> đpcm

10 tháng 8 2016

a) gọi D là UCLN(3n-2;4n-3)

\(\Rightarrow\)\(\hept{\begin{cases}3n-2\\4n-3\end{cases}}\)chia hết cho  D \(\Rightarrow\)\(\hept{\begin{cases}4\left(3n-2\right)\\3\left(4n-3\right)\end{cases}}\)chia hết cho D \(\Rightarrow\)\(\hept{\begin{cases}12n-8\\12n-9\end{cases}}\)chia hết cho D

\(\Rightarrow\)[(12n-9)-(12n-8)] chia hết cho D

\(\Rightarrow\)(12n-9-12n+8) chia hết cho D

\(\Rightarrow\)-1 chia hết cho D => D \(\in\) U(1) =>D \(\in\){1;-1}

hay UCLN(3n-2;4n-3) \(\in\){1;-1}

chứng minh \(\frac{3n-2}{4n-3}\)là phân số tối giản

b) +) để A là phân số thì n-3\(\ne\)0

                             =>n\(\ne\)3

+) ta có  \(\frac{n+1}{n-3}\)\(\frac{n-3+4}{n-3}\)= 1 + \(\frac{4}{n-3}\)

để A là số nguyên thì \(\frac{4}{n-3}\) cũng phải là số nguyên 

=> 4 chia hết n-3

=> n-3 \(\in\)U(4)

mà U(4) = {-1;-2;-4;1;2;4}                             

ta có bảng

n-3-1-2-4124
n21-1457

vậy n \(\in\){2;1;-1;4;5;7} thì A là số nguyên
 

7 tháng 5 2017

Gọi ƯCLN(b,a+b)=d(a,a+b)=d (d ∈∈N*)

⇒⇒ b d ; a+b d

⇒⇒ b d ; ad

Vì \(\dfrac{a}{b}\)tối giản nên ⇒⇒ d= 1

Vậy nếu \(\dfrac{a}{b}\) tối giản thì \(\dfrac{a+b}{b}\) tối giản

4 tháng 2 2022

hahaa

6 tháng 8 2016

Giải:

Gọi d = ƯCLN(n+1;n). Nên suy ra:

n+1 chia hết cho d

n chia hết cho d

\(\Rightarrow n+1-n\) chia hết cho d

\(\Rightarrow1\) chia hết cho d

\(\Rightarrow d=1\)

\(\Rightarrow\) ƯCLN(n+1;n)=1

\(\Rightarrow\) Phân số \(A=\frac{n+1}{n}\) là phân số tối giản ( đpcm)

 

6 tháng 8 2016

Ta có n + 1 và n là hai số tự nhiên liên tiếp.

Vì n và n + 1 là hai số nguyên tố cùng nhau nên:

n + 1 và n có ƯCLN = 1

Vì ƯCLN là 1 nên không thể rút gọn

=> \(\frac{n+1}{n}\) tối giản

 

2 tháng 7 2018

Gọi d = ƯCLN ( n3 + 2n ; n4 + 3n2 + 1 )

=> n3 + 2n \(⋮\)d  ( 1 ) và n4 + 3n2 + 1 \(⋮\)d ( 2 )

Từ ( 1 ) => n . ( n3 + 2n ) \(⋮\)d => n4 + 2n2 \(⋮\)d ( 3 )

Từ ( 2 ) và ( 3 ) => ( n4 + 3n2 + 1 ) - ( n4 + 2n2 ) \(⋮\)d

=> n4 + 3n2 + 1 - n4 - 2n2 \(⋮\)d

=> ( n4 - n4 ) + ( 3n2 - 2n2 ) + 1 \(⋮\)d

=> n2 + 1 \(⋮\)d ( * )

=> n2 . ( n+ 1 ) \(⋮\)d

=> n4 + n2 \(⋮\)d ( 4 )

Từ ( 3 ) và ( 4 ) => ( n+ 2n2 ) - ( n4 + 2n ) \(⋮\)d

=> n2 \(⋮\)d ( 5 )

Từ ( * ) và ( 5 ) => ( n2 + 1 ) - n2 \(⋮\)d

=> 1 \(⋮\)d

=> d = 1

Vậy : phân số đã cho tối giản

14 tháng 5 2017

a) Hướng dẫn: Đầu tiên chỉ cần phân tích ước của 74. Vậy để \(\frac{a}{74}\)tối giản thì a \(\ne\)Ư(74) hay a \(\ne\)B[(Ư)74]

b) Gọi d là ước chung lớn nhất của 3n và 3n+1

=> 3n \(⋮\)

Và: 3n+1 \(⋮\)d

=> (3n+1)-3n \(⋮\)d

=> 1 \(⋮\)d

=> d \(\in\)Ư(1)

=> d \(\in\){ 1}

Vậy \(\frac{3n}{3n+1}\)là phân số tối giản

Duyệt đi, chúc bạn học giỏi!

8 tháng 6 2017

\(\frac{3n}{3n+1}\)