\(10^2!\) có chữ số tận cùng là bao nhiêu?

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2024

Ta thấy \(10^2!=100!=1.2.3...100\) nên có chữ số tận cùng là 0.

5 tháng 2 2024

số 0

14 tháng 10 2020

ta có : 79^9= 781=74*(20+1)= (....1)

=> 79^9 có số tận cùng là 1

14 tháng 10 2020

9 đồng dư với 1 mod 4 => \(9^9\) đồng dư với 1 mod 4 => \(7^{9^9}\)\(7^{4k+1}\) (k thuộc N)   thì có chữ số tận cùng là 7

K
28 tháng 5 2017

bạn chỉ cần cố gắng là làm được

28 tháng 9 2018

tận cùng là 6

30 tháng 9 2018

\(3^{2^{2003}}=3^{\overline{...6}}=\overline{...9}\)

Vậy \(3^{2^{2003}}\)có tận cùng là 9

Đây không phải là bài lớp 9

1 tháng 7 2017

(mk dùng kí hiệu  \(\overline{...6}\)  để chỉ số có tận cùng là 6 nha)

Ta có  \(2^{1992}=\left(2^4\right)^{498}=\left(\overline{...6}\right)^{498}=\overline{..6}\)

=>  \(3^{2^{1992}}=3^6=9\)  (mod 10).       (Dòng này mk dùng dấu "=" thay cho dấu đồng dư nha vì ko có dấu đồng dư)

Lại có  \(9^{1992}=\left(9^4\right)^{498}=\left(\overline{...1}\right)^{498}=\overline{...1}\)

=>  \(2^{9^{1992}}=2^1=2\)  (mod 10)   (dòng này cũng là dấu đồng dư)

Do đó chữ số tận cùng của  \(3^{2^{1992}}-2^{9^{1992}}\)  là  9 - 2 = 7