Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có abc^2 có tận cùng là abc nên c chỉ có thể =1;5;6
nếu c=1thi ab1^2-ab1=1000n (n là 1 số tự nhiên)
suy ra ab1(ab1-1)=1000n suy ra ab1.ab0=1000n suy ra ab1.ab=100n suy ra b=0
tức là a01.a0=100n suy ra a01.a=10n suy ra a=0 dieu vo li
tương tự với a=6 và a=5 thì ta chỉ có 1 kết quả là 625
Câu a thì mình chịu rồi @@ sorry nha
Còn câu b, bạn thấy rằng x2-3x+2-x2+x+1+2x-3=0 đúng không nào?
Nếu như bạn còn nhớ công thức a+b+c=0 <=> a3+b3+c3=3abc
Thì chắc chắn là bạn sẽ giải ra được bài này thôi. Đáp số là x=1 hoặc x=2 hoặc x=3/2 bạn nhé.
Chúc bạn giải được câu b này. Nếu như vẫn còn thắc mắc thì trả lời lại cho mình để mình gừi bài giải chi tiết nhé, do giờ mình đang bận @@
a, Ta có \(\Delta=\left(-3\right)^2-4.\left(-1\right).2=9+8=17>0\)
Nên pt có 2 nghiệm phân biệt
\(x_1=\frac{3-\sqrt{17}}{4};x_2=\frac{3+\sqrt{17}}{4}\)
b,A/D hệ thức vi et ta có
\(\hept{\begin{cases}x_1+x_2=\frac{3}{2}\\x_1x_2=-\frac{1}{2}\end{cases}}\)
ý cậu như nào >?
Dự đoán khi a=b=1, ta chỉ cần xét thằng F = 9($\frac{1}{a^2}$ + $\frac{1}{b^2}$) - 6($\frac{a}{b}$ + $\frac{b}{a}$) lớn hơn hoặc bằng cái gì đó là xong . Thì ta có :
F = 9.$\frac{a^2 + b^2}{a^2b^2}$ - 6. $\frac{a^2+b^2}{ab}
= $\frac{a^2+b^2}{ab}$.($\frac{9}{ab}$ - 6)
Lại có $a^2 + b^2$ > 2ab (BĐT côsi )
=> $\frac{a^2+b^2}{ab}$ > 2
Và $\frac{9}{ab}$ - 6 > $\frac{9}{\frac{(a+b)^2}{4}}$ - 6 = 3
=> F > 6
Mà 2($a^2 + b^2$) > $(a+b)^2$ = 4
=> Q > 4+ F > 10
Dấu " = " <=> a=b=1. ^^
ta có : 79^9= 781=74*(20+1)= (....1)
=> 79^9 có số tận cùng là 1
9 đồng dư với 1 mod 4 => \(9^9\) đồng dư với 1 mod 4 => \(7^{9^9}\)= \(7^{4k+1}\) (k thuộc N) thì có chữ số tận cùng là 7