Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\\ a,Gọi.ƯCLN\left(n,n+1\right)=d\\ \Rightarrow n⋮d;n+1⋮d\\ \Rightarrow n+1-n⋮d\\ \Rightarrow1⋮d\\ \Rightarrow d=1\)
Vậy \(ƯCLN\left(n,n+1\right)=1\)
Gọi a là ước chung của ( 2n+1 ) và ( 3n +1)
Suy ra ( 2n+1 ) chia hết cho a và ( 3n +1) chia hết cho a
3. ( 2n+1 )-2. ( 3n +1) chia hết cho a
Hay 1 chia hết cho a suy ra a=1. Vậy ƯCLN của 2 số đó =1
Ta có :
gọi k là UCLN của 2n+1 và 3n+1
=> 3(2n+1) \(⋮k\)
=> 2(3n+1)\(⋮k\)
=> 3(2n+1)-2(3n+1)\(⋮k\)
=> 1\(⋮k\)
Vì k >o
=> k=1
=> đpcm
3n+4+3n+2 + 2n+3 + 2n+1
= 3n.( 34 + 32) + 2n.( 23+2)
= 3n.90 + 2n.10
= 10.( 3n.9+2n.5)
vì 10 ⋮ 5 ⇔ 10.( 3n.9 + 2n.5) ⋮ 5 ⇔ 3n+4+3n+2+2n+2+2n+1 ⋮ 5(đpcm)
b) Gọi \(d\inƯC\left(3n+2;2n+1\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}3n+2⋮d\\2n+1⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+4⋮d\\6n+3⋮d\end{matrix}\right.\Leftrightarrow1⋮d\)
\(\Leftrightarrow d\in\left\{1;-1\right\}\)
\(\LeftrightarrowƯCLN\left(3n+2;2n+1\right)=1\)
hay \(B=\dfrac{3n+2}{2n+1}\) là phân số tối giản (đpcm)
Gọi ƯCLN(n-1,n-2)=d
n-1⋮d
n-2⋮d
(n-1)-(n-2)⋮d
1⋮d ⇒ƯCLN(n-1,n-2)=1
Vậy n-1/n-2 là ps tối giản
Lời giải:
$M=3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}=3^{n+1}.3^2+3^{n+1}+2^{n+2}.2+2^{n+2}$
$=3^{n+1}(9+1)+2^{n+2}(2+1)$
$=3^{n+1}.10+2^{n+2}.3$
$=6.3^n.5+6.2^{n+1}=6(3^n.5+2^{n+1})\vdots 6$ (đpcm)
Gọi ƯCLN(2n+1;3n+1)=d
Ta có: 2n+1 chia hết cho d
=>3(2n+1) chia hết cho d
6n+3 chia hết cho d
có 3n+1 chia hết cho d
=>2(3n+1) chia hết cho d
6n+2 chia hết cho d
=>6n+3-(6n+2) chia hết cho d
=>1 chia hết cho d hay d=1
Do đó ƯCLN(2n+1;3n+1)=1
Vậy 2n+1 và 3n+1 là số nguyên tố cùng nhau
đặt 3n+2 và 2n+1 = d
suy ra 3n+2 chia hết cho d ; 2n+1 chia hết cho d
suy ra : (3n+2)-(2n+1) chia hết cho d
suy ra : 2.(3n+2)-3.(2n+1) chia hết cho d
suy ra : 1 chia hết cho d
suy ra d=1
vậy 3n+2 và 2n+1 là hai số nguyên tố cùng nhau
tick cho mình nhé đúng rồi đấy
Gọi UCLN(2n+5, 3n+7) là d
Ta có 2n+5 chia hết cho d
=> 3(2n+5) chia hết cho d
=> 6n+15 chia hết cho d (1)
Ta có: 3n+7 chia hết cho d
=> 2(3n+7) chia hết cho d
=> 6n+14 chia hết cho d (2)
Từ (1) và (2) suy ra: (6n+15) -( 6n+14) chia hết cho d
=> 1 chia hết cho d
=> d=1
=> UCLN(2n+5, 3n+7) =1
Vậy 2n+5, 3n+7 là hai số nguyên tố cùng nhau
\(A=\dfrac{2n^2+3n+1}{3n+2}\)
Gọi ước chung lớn nhất của \(2n^2+3n+1\) và \(3n+1\) là d \(\left(d\in N;d>0\right)\)
Suy ra
\(2n^2+3n+1⋮d\Rightarrow9\left(2n^2+3n+1\right)⋮d\\ \Leftrightarrow18n^2+27n+9⋮d\Leftrightarrow\left(18n^2+12n\right)+\left(15n+10\right)-1⋮d\\ \Leftrightarrow\left(3n+2\right)\left(9n+5\right)-1⋮d\)
Mà \(3n+2⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\left(d>0;d\in N\right)\)
Suy ra phân số A tối giản.
quá ez
N=0