Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B)2-9+1-3
.vì bỏ ngoặc trước nó là dấu trừ thì ta đổi dấu các số hạng trong ngoặc
a)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{3}{4}+...+\frac{1}{9}-\frac{1}{10}\)
= \(1+\left(\frac{-1}{2}+\frac{1}{2}\right)+\left(\frac{-1}{3}+\frac{1}{3}\right)+...+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{10}\)
= \(1-\frac{1}{10}\)
=\(\frac{9}{10}\)
b)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
=\(1+\left(\frac{-1}{3}+\frac{1}{3}\right)+\left(\frac{-1}{5}+\frac{1}{5}\right)+\left(\frac{-1}{7}+\frac{1}{7}\right)+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{11}\)
=\(1-\frac{1}{11}\)
= \(\frac{10}{11}\)
c) đặt A=\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{7.9}+\frac{3}{9.11}\)
\(\frac{1}{3}A\)=\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
\(\frac{2}{3}A\)=\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
\(\frac{2}{3}A\)=\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(\frac{2}{3}A\)=\(1+\left(\frac{-1}{3}+\frac{1}{3}\right)+\left(\frac{-1}{5}+\frac{1}{5}\right)+\left(\frac{-1}{7}+\frac{1}{7}\right)+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{11}\)
\(\frac{2}{3}A\)=\(\frac{10}{11}\)
A= \(\frac{10}{11}:\frac{2}{3}\)
A= \(\frac{10}{11}.\frac{3}{2}\)=\(\frac{15}{11}\)
d) giả tương tự câu c kết quả \(\frac{25}{11}\)
tổng đặc biệt đó bạn
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{9\times10}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(1-\frac{1}{10}=\frac{9}{10}\)
những câu sau cũng áp dụng như vậy nhé
A=\(\frac{1}{30}\)+\(\frac{1}{42}\)+\(\frac{1}{56}\)+\(\frac{1}{72}\)+\(\frac{1}{90}\)+\(\frac{1}{110}\)+\(\frac{1}{132}\)
A=\(\frac{1}{5.6}\)+\(\frac{1}{6.7}\)+\(\frac{1}{7.8}\)+\(\frac{1}{8.9}\)+\(\frac{1}{9.10}\)+\(\frac{1}{10.11}\)+\(\frac{1}{11.12}\)
A= \(\frac{1}{5}\)-\(\frac{1}{6}\)+\(\frac{1}{6}\)-\(\frac{1}{7}\)+\(\frac{1}{7}\)-\(\frac{1}{8}\)+\(\frac{1}{8}\)-\(\frac{1}{9}\)+\(\frac{1}{9}\)-\(\frac{1}{10}\)+\(\frac{1}{10}\)-\(\frac{1}{11}\)+\(\frac{1}{11}\)-\(\frac{1}{12}\)
A= \(\frac{1}{5}\)-\(\frac{1}{12}\)=\(\frac{7}{60}\)
a. \(\left[\left(-2\right)^5.2014-4^2.2015\right]-\left(-2015^0+3^2-2^3\right)\)
\(=-64448-32240+1-9+8=-96688\)
Tớ lm lại nhé:
SBC = 9-1/2-1/3-1/4-...-1/10
=1+1+...+1(9 số 1) -1/2-1/3-1/4-1/5-...-1/10.
=(1-1/2)+(1-1/3)+...+(1-1/10)
=1/2+2/3+...+9/10= SC
=> phép chia có thương là 1(vì SBC=SC)
1.
B= 9+99+999+..+999...9(50 chữ số 9)
B= 10-1+100-1+1000-1+...+100...0(50 chữ số 0)-1
B=[10+100+1000+...+100...0(50 chữ số 0)]-(1+1+1+...+1)(50 số hạng 1)
B= 111...10(50 chữ số 1) - 50
B = 111...1060 (48 chữ số 1)
1. Tính
A = 9 + 99 + 999 + 9999
A = 108 + 999 + 9999
A = 1170 + 9999
A = 11106
đề bài là tính hay là rút gọn bạn ơi để tớ còn làm
tính