Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6xy - 2x + 9y = 68
(6xy - 2x) + (9y - 3) = 68 - 3
2x(3y - 1) + 3(3y - 1) = 65
(3y - 1)(2x + 3) = 65
*) TH1: 2x + 3 = -1 và 3y - 1 = -65
+) 2x + 3 = -1
2x = -1 - 3
2x = -4
x = -4 : 2
x = -2
+) 3y - 1 = -65
3y = -65 + 1
3y = -64
y = -64/3
*) TH2: 2x + 3 = -65 và 3y - 1 = -1
+) 2x + 3 = -65
2x = -65 - 3
2x = -68
x = -68 : 2
x = -34
+) 3y - 1 = -1
3y = -1 + 1
3y = 0
y = 0
*) TH3: 2x + 3 = 1 và 3y - 1 = 65
+) 2x + 3 = 1
2x = 1 - 3
2x = -2
x = -2 : 2
x = -1
+) 3y - 1 = 65
3y = 65 + 1
3y = 66
y = 66 : 3
y = 22
*) TH4: 2x + 3 = 65 và 3y - 1 = 1
+) 2x + 3 = 65
2x = 65 - 3
2x = 62
x = 62 : 2
x = 31
+) 3y - 1 = 1
3y = 1 + 1
3y = 2
y = 2/3
Vậy ta được các cặp giá trị (x; y) như sau:
(-2; -64/3); (-34; 0); (-1; 22); (31; 2/3)
6xy-2x+9y=68
=>\(2x\left(3y-1\right)+9y-3=65\)
=>\(2x\left(3y-1\right)+3\left(3y-1\right)=65\)
=>\(\left(2x+3\right)\left(3y-1\right)=65\)(2)
x,y là các số nguyên
=>2x+3 lẻ và 3y-1 chia 3 dư 2 và 2x+3>=3 và 3y-1>=-1(1)
Từ (1) và (2) suy ra \(\left(2x+3\right)\left(3y-1\right)=13\cdot5\)
=>\(\left\{{}\begin{matrix}2x+3=13\\3y-1=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=10\\3y=6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=5\\y=2\end{matrix}\right.\)
Đề là thực hiện phép tính nhé mọi người, ai lm hộ mk với.. Thanks
\(a,x^2y-8x+xy-8=xy\left(x+1\right)-8\left(x+1\right)=\left(xy-8\right)\left(x+1\right)\\ b,=\left(x+3y\right)^2-9=\left(x+3y-3\right)\left(x+3y+3\right)\)
\(A=3x^2\left(2x^2-7x-2\right)-6x^2\left(x^2-4x-1\right)-3x^3+15\\ A=6x^4-21x^3-6x^2-6x^4+24x^3+6x^2-3x^3+15\\ A=15\left(đpcm\right)\)
\(Sửa:\left(6x^3-7x^2+2x\right):\left(2x+1\right)\\ =\left(6x^3+3x^2-10x^2-5x\right):\left(2x+1\right)\\ =\left[3x^2\left(2x+1\right)-5x\left(2x+1\right)\right]:\left(2x+1\right)\\ =3x^2-5x\)
Ta có: \(6xy-2x+9y=68\)
\(\Leftrightarrow2x\left(3y-1\right)+3\left(3y-1\right)=65\)
\(\Leftrightarrow\left(3y-1\right)\left(2x+3\right)=65\)
\(\Rightarrow\left(2x+3\right);\left(3y-1\right)\inƯ\left(65\right)=\left\{\pm1,\pm5,\pm13,\pm65\right\}\)
Ta có bảng sau:
0
Vậy...