K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2019

giúp mình làm bài này với:tìm x

a,x+4=2mu0+1mu2019

b,1+1/3+1/6+1/10+....+1/x nhan (x+1):2

SO SÁNH

A=2011mu2010+1/2011mu2011+1 và B=2011mu2011+1/2011mu2012+1

AH
Akai Haruma
Giáo viên
4 tháng 10 2024

Lời giải:
Để PT có nghiệm nguyên thì:

$\Delta=m^2-4n=a^2$ với $a$ là số tự nhiên.

$\Rightarrow 4n=(m-a)(m+a)$

Vì $n$ là số nguyên tố nên và $m-a< m+a$ với $a$ tự nhiên, $m+a, m-a$ cùng tính chẵn lẻ nên ta xét các TH sau đây:

TH1: 

$m-a=2, m+a=2n\Rightarrow m=n+1$

$\Rightarrow m,n$ khác tính chẵn lẻ. Mà $m,n$ nguyên tố nên 1 trong 2 số bằng 2.

$n< m$ nên $n=2\Rightarrow m=3$.

TH2: 
$m-a=4, m+a=n$

Vì $m-a$ chẵn nên $m+a$ chẵn. Hay $n$ chẵn $\Rightarrow n=2$

$\Rightarrow m+a< m-a$ (vô lý - loại) 

Vậy........

 

AH
Akai Haruma
Giáo viên
4 tháng 10 2024

Lời giải:
Để PT có nghiệm nguyên thì:

$\Delta=m^2-4n=a^2$ với $a$ là số tự nhiên.

$\Rightarrow 4n=(m-a)(m+a)$

Vì $n$ là số nguyên tố nên và $m-a< m+a$ với $a$ tự nhiên, $m+a, m-a$ cùng tính chẵn lẻ nên ta xét các TH sau đây:

TH1: 

$m-a=2, m+a=2n\Rightarrow m=n+1$

$\Rightarrow m,n$ khác tính chẵn lẻ. Mà $m,n$ nguyên tố nên 1 trong 2 số bằng 2.

$n< m$ nên $n=2\Rightarrow m=3$.

TH2: 
$m-a=4, m+a=n$

Vì $m-a$ chẵn nên $m+a$ chẵn. Hay $n$ chẵn $\Rightarrow n=2$

$\Rightarrow m+a< m-a$ (vô lý - loại) 

Vậy........

 

Theo đề: \(p=x^3+y^3-3xy+1=\left(x+y\right)^3+1-3xy\left(x+y\right)-3xy\)

\(=\left(x+y+1\right)\left[\left(x+y\right)^2-\left(x+y\right)+1\right]-3xy\left(x+y+1\right)\)

\(=\left(x+y+1\right)\left(x^2+y^2-x-y-xy+1\right)\)

Vậy \(\left(x+y+1\right)\)và \(\left(x^2+y^2-x-y-xy+1\right)\)là các ước của p, mà p là số nguyên tố nên 1 trong 2 ước trên phải bằng 1 và ước còn lại bằng chính p

+) \(\hept{\begin{cases}x+y+1=1\Leftrightarrow x=-y\\x^2+y^2-x-y-xy+1=p\end{cases}}\)---> Loại, vì x,y nguyên dương nên x không thể bằng -y.

+) \(\hept{\begin{cases}x+y+1=p\Leftrightarrow x+y=p-1\\x^2+y^2-x-y-xy+1=1\end{cases}}\)---> Xét vế dưới:

\(x^2+y^2-x-y-xy=0\)---> Áp dụng 1 số BĐT đơn giản:

\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)và \(xy\le\frac{\left(x+y\right)^2}{4}\Rightarrow-xy\ge-\frac{\left(x+y\right)^2}{4}\)

Suy ra: \(x^2+y^2-x-y-xy\ge\frac{\left(x+y\right)^2}{2}-\left(x+y\right)-\frac{\left(x+y\right)^2}{4}=\frac{\left(x+y\right)^2}{4}-\left(x+y\right)\)

\(\Rightarrow0\ge\frac{\left(x+y\right)^2}{4}-\left(x+y\right)\Leftrightarrow0\le x+y\le4\Rightarrow0\le p-1\le4\Leftrightarrow1\le p\le5\)

Vậy số nguyên tố p lớn nhất thỏa mãn đề bài là p = 5

Khi đó x = y = 2.