K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2023

300 người nha bạn

 

13 tháng 12 2023

Gọi số người bộ đội ở đơn vị đó là n (\(n\in N\)*)

Vì khi xếp hàng 15, 20, 25 đều thiếu 1 người nên suy ra:

\(\left\{{}\begin{matrix}n+1⋮15\\n+1⋮20\\n+1⋮25\end{matrix}\right.\)\(\Rightarrow\left(n+1\right)\in BC\left(15,20,25\right)\)

Lại có: BCNN(15,20,25)= 300

\(\Rightarrow\left(n+1\right)\in B\left(300\right)=\left\{0,300,600,900...\right\}\)

\(\Rightarrow n\in\left\{299,599,899,...\right\}\)

Mà số người chưa tới 400 => n=299

Vậy...

15 tháng 8 2018

Gọi a là số học sinh cần tìm

Ta có: a : 2;3;4;5;6 dư 1

nên a+1 chia hết cho 2;3;4;5;6

Phân tích thừa số nguyên tố ta có:

2=2 4=2^2 6=2.3

3=3 5=5

BCNN(2;3;4;5;6)= 2^2.3.5=60

BCNN(2;3;4;5;6)=BC(60)={0;60;120;180;240;300;360;...}

Mà a+1={0;60;120;180;240;300;360;..}

Suy ra: a={59;119;179;239;299;359;....}

Mặt khác a<300 nên a=119

Vậy số học sinh cần tìm là 119 học sinh.

cho mik nha ^..^

15 tháng 8 2018

Bài giải : Gọi số bộ đội là a . khi xếp hàng 2, 3, 4, 5, 6 đều thiếu 1 => a + 1 \(\in\)BC(2; 3; 4; 5; 6)

Ta có : 2 = 2

           3 = 3

           4 = 22

          5  = 5 

           6 = 2 . 3

BCNN(2; 3 ; 4; 5; 6) = 22 . 3 . 5 = 60

( a + 1 ) \(\in\) BC(2; 3; 4; 5; 6) \(\in\)B(60) = {0; 60; 120; 180; 360; ...}

VÌ a \(⋮\)7 và 0 < a < 300 nên a + 1 = 120 => a = 119

13 tháng 8 2018

số đó là 119

ko sai đâu nhé, mik mới lớp 5,nhưng mik cũng đã từng làm qua và đúng

13 tháng 8 2018

mình biết nội quy rồi nên đưng đăng nội quy

ai chơi bang bang 2 kết bạn với mình

mình có nick có 54k vàng đang góp mua pika 

ai kết bạn mình cho

30 tháng 7 2023

Gọi số người ở đội đó là: \(x;\left(x< 1000\right)\)

Ta có: Đội xếp hàng 20,25,30 thì đều dư 15 người

\(=>x-15⋮20;x-15⋮25;x-15⋮30\)

\(=>x\in BC\left(20,25,30\right)\)

Ta có: \(20=2^2=5;25=5^2;30=2.3.5\)

\(=>BCNN\left(20,25,30\right)=2^2.5^2.3=300\)

\(=>BC\left(20,25,30\right)=B\left(300\right)=\left\{0;300;600;900;1200;...\right\}\)

\(=>x\in\left\{15;315;615;915;1215;...\right\}\)

mà xếp hàng 41 thì vừa đủ \(=>x⋮41\)

\(=>x=615\)

Vậy đội có 615 người.

Gọi số người của đơn vị bộ đội là x

Theo đề, ta có:

x-15 thuộc BC(20;25;30) và x chia hết cho 41

mà x<=1000

nên x=615

Gọi số người của đơn vị bộ đội đó là a    \(\left(a\in N;a\le1000\right)\)

Theo bài ra, ta có:

a chia 20 thiếu 5 người

a chia 25 thiếu 20 người 

a chia 30 thiếu 15 người

=>a+5 chia hết cho 20

a+20 chia hết cho 25

a+15 chia hết cho 30

=>a+5+40 chia hết cho 20

a+20+25 chia hết cho 25

a+15+30 chia hết cho 30

=>a+45 chia hết cho 20

a+45 chia hết cho 25

a+45 chia hết cho 30

=>a+45 thuộc BC(20,25,30)

Có 20=22.5

25=52

30=2.3.5

=>BCNN(20,25,30)=22.3.52=300

=>BC(20,25,30) thuộc B(300)={0;300;600;900;1200;.....}

=>a + 45 thuộc {0;300;600;900;1200;.....}

mà \(a\le1000\)nên \(a+45\le1000\)

=> a+45 thuộc {0;300;600;900}

=>a thuộc {255;555;855}

mà a chia hết cho 41

=>a=\(\varnothing\)

Vậy......

Ko chắc bài này lm đúng nữa 

18 tháng 12 2020

rất cảm ơn bạn

mik không gửi câu hỏi này nhưng mik đang cần cảm ơn bạn nhiều

2 tháng 1 2017

Gọi đơn vị bộ đội là x

Đơn vị bộ đội khi xếp thành 20;25;30 đều dư 15 nên x-15 chia hết cho 10;25;30 đều dư 15

        Đầu tiên ta tính bội chung nhỏ nhất (20;25;30)

Ta có: 20=25mũ2.5             25=5mũ2              3=2.5.3

             BCNN=2mũ2.5.3mũ2     = 300

x-15={ 300;600;900;...}

x có thể:  {315;615;915;...}

Mà đơn vị bộ đội khi xếp thành hàng 41 vừa đủ nhỏ hơn 1000 nên chỉ có số 615 thỏa mãm điều kiện trên

27 tháng 7 2016

Gọi số bộ đội của đơn vị đó là a (a \(\in\)N)

Vì khi xếp hàng 2,3,4,5 đều thiếu 1 người nên a + 1 chia hết cho 2,3,4,5

=> a + 1 \(\in\)BC(2,3,4,5)

Ta có :   2 = 2      ;      3 = 3        ;     4 = 22     ;      5 = 5

=> BCNN(2,3,4,5) = 22 . 3 . 5 = 60

Mà B(60) = {0;60;120;180;240;300;...}

=> BC(2,3,4,5) = {0;60;120;180;240;300;...}

=> a + 1 \(\in\){0;60;120;180;240;300;....}

=> a \(\in\){-1;59;119;179;239;299;...}

Vì a < 300 và a chia hết cho 7 nên a = 119

Vậy số bộ đội của đơn vị đó là 119 người

Ủng hộ mk nha !!! ^_^

29 tháng 7 2016

Gọi số bộ đội của đơn vị đó là a (a $\in$∈N)

Vì khi xếp hàng 2,3,4,5 đều thiếu 1 người nên a + 1 chia hết cho 2,3,4,5

=> a + 1 $\in$∈BC(2,3,4,5)

Ta có :   2 = 2      ;      3 = 3        ;     4 = 22     ;      5 = 5

=> BCNN(2,3,4,5) = 22 . 3 . 5 = 60

Mà B(60) = {0;60;120;180;240;300;...}

=> BC(2,3,4,5) = {0;60;120;180;240;300;...}

=> a + 1 $\in$∈{0;60;120;180;240;300;....}

=> a $\in$∈{-1;59;119;179;239;299;...}

Vì a < 300 và a chia hết cho 7 nên a = 119

Vậy số bộ đội của đơn vị đó là 119 người

7 tháng 12 2021

Bài 1 :

Lời giải

Xếp thành hàng 12, 15, 18 hàng đều thừa 5 hs
=> x‐5 thuộc BC ﴾12; 15; 18﴿ và 200<x‐5<400
BCNN ﴾12; 15; 18﴿
12= 222.3
15= 3.5
18= 2.322
BCNN ﴾12; 15; 18﴿ = 222.322.5 = 4.9.5 = 180
BC ﴾12; 15; 18﴿ = B﴾180﴿ = {0;180;360;540;......}
mà 200<x‐5<400
nên x‐5=360
x= 360+5= 365
Vậy số học sinh khối 6 đó là 365 hs

Bài 2 : 

Lời giải

Gọi số người của đơn vị đó là a  (a∈N;a≤1000)(a∈N;a≤1000)

Theo bài ra ta có

  a chia 20 dư 15

  a chia 25 dư 15

  a chia 30 dư 15

=>a-15 chia hết cho 20 , 25 , 30 

=>a-15 thuộc BC(20,25,30)

Có 20=22.5

25=52

30=2.3.5

=>BCNN(20,25,30)=22.3.52=300

=>BC(20,25,30) thuộc B(300)={0;300;600;900;1200;....}

=>a-15 thuộc {0;300;600;900;1200;....}

=>a thuộc {15;315;615;915;1215;....}

mà a≤1000a≤1000

nên a thuộc {15;315;615;915}

Lại có a chia hết cho 41

=>a=615

Vậy.........

HT

7 tháng 12 2021

không biết ạ

23 tháng 9 2023

Giải toán bằng phương pháp chặn kết hợp với tìm BCNN

Gọi số người trong đơn vị là \(x\) (người) \(x\in\) N*; \(x\) ≤ 1000

Theo bài ra ta có: \(\left\{{}\begin{matrix}x-15⋮20;25;30\\x⋮41\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x-15\in BC\left(20;25;30\right)\\x⋮41\end{matrix}\right.\)

20 = 22.5; 25  = 52; 30 = 2.3.5 BCNN(20;25;30) = 22.3.52=300

⇒ \(\left\{{}\begin{matrix}x-15⋮300\\x⋮41\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=300k+15< 1000\\x=300k+15⋮41\end{matrix}\right.\) 

⇒ \(\left\{{}\begin{matrix}x=300k+15;k\le3\\13k+15⋮41\end{matrix}\right.\)⇒ \(\left\{{}\begin{matrix}x=300k+15\\k=2\end{matrix}\right.\)⇒ \(x\) = 615

Kết luận Đơn vị bộ đội có 615 người

Thử lại ta có: 615 : 20; 25; 30 dư 15 (ok)

                       615 : 41 = 15 (ok)