Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\dfrac{3}{7}\)\(x\) - 0,4 = - \(\dfrac{17}{35}\)
\(\dfrac{3}{7}\)\(x\) = - \(\dfrac{17}{35}\) + 0,4
\(\dfrac{3}{7}\)\(x\) = - \(\dfrac{3}{35}\)
\(x\) = - \(\dfrac{3}{35}\): \(\dfrac{3}{7}\)
\(x\) = - \(\dfrac{1}{5}\)
b, 0,2.(\(x\) - 3) +2,4 = 10
0,2.(\(x\) - 3) = 10 - 2,4
0,2.(\(x\) - 3) = 7,6
\(x\) - 3 = 7,6:0,2
\(x\) - 3 = 38
\(x\) = 38 + 3
\(x\) = 41
| x - 2,4| = \(\dfrac{1}{2}\)
\(\left[{}\begin{matrix}x-2,4=\dfrac{1}{2}(đk:x>2,4)\\x-2,4=-\dfrac{1}{2}(đk:x< 2,4)\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{1}{2}+2,4\\x=-\dfrac{1}{2}+2,4\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=2,9(tm)\\x=1,9(tm)\end{matrix}\right.\)
vậy \(x\in\) { 1,9 ; 2,9}
a: Sửa đề: \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\ne9\end{matrix}\right.\)
Để A là số nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-3\)
=>\(\sqrt{x}-3+4⋮\sqrt{x}-3\)
=>\(4⋮\sqrt{x}-3\)
=>\(\sqrt{x}-3\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(\sqrt{x}\in\left\{4;2;5;1;7;-1\right\}\)
=>\(\sqrt{x}\in\left\{4;2;5;1;7\right\}\)
=>\(x\in\left\{16;4;25;1;49\right\}\)
b:
\(a,\dfrac{2}{3}x-\dfrac{2}{5}=\dfrac{1}{2}x-\dfrac{1}{3}\\ \Rightarrow\dfrac{2}{3}x-\dfrac{1}{2}x-\dfrac{2}{5}=-\dfrac{1}{3}\\ \Rightarrow x\left(\dfrac{2}{3}-\dfrac{1}{2}\right)-\dfrac{2}{5}=-\dfrac{1}{3}\\ \Rightarrow x\dfrac{1}{6}=-\dfrac{11}{15}\\ \Rightarrow x=-\dfrac{22}{5}\\ b,\dfrac{1}{3}x+\dfrac{2}{5}.\left(x+1\right)=0\\ \Rightarrow\dfrac{1}{3}x+\left(x+1\right)=-\dfrac{2}{5}\\ \Rightarrow\dfrac{1}{3}x=-\dfrac{2}{5}-\left(x+1\right)\\ \Rightarrow\dfrac{1}{3}x=-\dfrac{7}{5}-x\\ \Rightarrow\dfrac{1}{3}.2x=-\dfrac{7}{5}\\ \Rightarrow2x=-\dfrac{21}{5}\\ \Rightarrow x=-\dfrac{21}{10}.\)
\(\dfrac{1}{2}x+2\dfrac{1}{2}=3\dfrac{1}{2}x.\left(-\dfrac{1}{3}\right)\\ \Rightarrow\dfrac{1}{2}x+\dfrac{5}{2}=\dfrac{7}{2}x.\left(-\dfrac{1}{3}\right)\\ \Rightarrow\dfrac{1}{2}x+\dfrac{5}{2}+\dfrac{7}{2}x=-\dfrac{1}{3}\\ \Rightarrow\left(\dfrac{1}{2}+\dfrac{7}{2}\right)x+\dfrac{5}{2}=-\dfrac{1}{3}\\ \Rightarrow4x=-\dfrac{17}{6}\\ \Rightarrow x=-\dfrac{17}{24}.\)
\(\dfrac{1}{2}x+2\dfrac{1}{2}=3\dfrac{1}{2}x-\dfrac{1}{3}\\ \Rightarrow\dfrac{1}{2}x-3\dfrac{1}{2}x=-\dfrac{1}{3}-2\dfrac{1}{2}\\ \Rightarrow\left(\dfrac{1}{2}-\dfrac{7}{2}\right)x=-\dfrac{1}{3}-\dfrac{5}{2}\\ \Rightarrow\dfrac{-6}{2}x=-\dfrac{17}{6}\\ \Rightarrow-3x=-\dfrac{17}{6}\\ \Rightarrow x=\left(-\dfrac{17}{6}\right):\left(-3\right)\\ \Rightarrow x=\dfrac{17}{18}\)
a, \(\dfrac{3}{7}\)\(x\)- \(\dfrac{2}{3}\)\(x\) = \(\dfrac{10}{21}\)
(\(\dfrac{3}{7}\) - \(\dfrac{2}{3}\)) \(\times\) \(x\) = \(\dfrac{10}{21}\)
- \(\dfrac{5}{21}\) \(\times\) \(x\) = \(\dfrac{10}{21}\)
\(x\) = \(\dfrac{10}{21}\) : (-\(\dfrac{5}{21}\))
\(x\) = -2
b, \(\dfrac{7}{35}\) : (\(x-\dfrac{1}{3}\)) = - \(\dfrac{2}{25}\)
\(x\) - \(\dfrac{1}{3}\) = \(\dfrac{7}{35}\) : (- \(\dfrac{2}{25}\))
\(x\) - \(\dfrac{1}{3}\) = - \(\dfrac{5}{2}\)
\(x\) = - \(\dfrac{5}{2}\) + \(\dfrac{1}{3}\)
\(x\) = - \(\dfrac{13}{6}\)
c, 3.(\(x\) - \(\dfrac{1}{2}\)) - 5.(\(x\) + \(\dfrac{3}{5}\)) = - \(x\)+ \(\dfrac{1}{5}\)
3\(x\) - \(\dfrac{3}{2}\) - 5\(x\) - 3 = - \(x\) + \(\dfrac{1}{5}\)
- \(x\) + 5\(x\) - 3\(x\) = - \(\dfrac{3}{2}\) - 3 - \(\dfrac{1}{5}\)
\(x\) = - \(\dfrac{47}{10}\)
\(a,\dfrac{3}{7}x-\dfrac{2}{3}x=\dfrac{10}{21}\\ \Rightarrow x\left(\dfrac{3}{7}-\dfrac{2}{3}\right)=\dfrac{10}{21}\\ \Rightarrow x.-\dfrac{5}{21}=\dfrac{10}{21}\\ \Rightarrow x=-2\\ b,\dfrac{7}{35}:\left(x-\dfrac{1}{3}\right)=-\dfrac{2}{25}\\ \Rightarrow\dfrac{1}{5}:\left(x-\dfrac{1}{3}\right)=-\dfrac{2}{25}\\ \Rightarrow x-\dfrac{1}{3}=-\dfrac{5}{2}\\ \Rightarrow x=-\dfrac{13}{6}\\ c,3.\left(x-\dfrac{1}{2}\right)-5.\left(x+\dfrac{3}{5}\right)=-x+\dfrac{1}{5}\\ \Rightarrow3x-\dfrac{3}{2}-5x+5=-x+\dfrac{1}{5}\)
\(\Rightarrow x\left(3-5\right)-\dfrac{3}{2}+5=-x+\dfrac{1}{5}\\ \Rightarrow-2x-\dfrac{13}{2}=-x+\dfrac{1}{5}\\ \Rightarrow-x-\dfrac{13}{5}=\dfrac{1}{5}\\ \Rightarrow x=\dfrac{1}{5}-\dfrac{13}{5}\\ \Rightarrow x=-\dfrac{12}{5}.\)
1,\(\dfrac{-1}{4}-\dfrac{3}{4}:x=-\dfrac{11}{36}\)
\(-\dfrac{3}{4}:x=\left(-\dfrac{1}{4}\right)-\left(-\dfrac{11}{36}\right)\)
\(-\dfrac{3}{4}:x=\dfrac{1}{18}\)
\(x=\left(-\dfrac{3}{4}\right):\left(\dfrac{1}{18}\right)\)
\(x=\dfrac{27}{2}\)
2, \(\dfrac{3}{4}x-\dfrac{1}{2}=\dfrac{3}{7}\)
\(\dfrac{3}{4}x=\dfrac{3}{7}+\dfrac{1}{2}\)
\(\dfrac{3}{4}x=\dfrac{13}{14}\)
\(x=\dfrac{13}{14}:\dfrac{3}{4}\)
\(x=\dfrac{26}{21}\)
a, -4\(\dfrac{3}{5}\).2\(\dfrac{4}{3}\) < \(x\) < -2\(\dfrac{3}{5}\): 1\(\dfrac{6}{15}\)
- \(\dfrac{23}{5}\).\(\dfrac{10}{3}\) < \(x\) < - \(\dfrac{13}{5}\): \(\dfrac{21}{15}\)
- \(\dfrac{46}{3}\) < \(x\) < - \(\dfrac{13}{7}\)
\(x\) \(\in\) {-15; -14;-13;..; -2}
a) Ta có \(-4\dfrac{3}{5}\cdot2\dfrac{4}{3}=-\dfrac{23}{5}\cdot\dfrac{10}{3}=-\dfrac{46}{3}\) và \(-2\dfrac{3}{5}\div1\dfrac{6}{15}=-\dfrac{13}{5}\div\dfrac{7}{5}=-\dfrac{13}{7}\)
Do đó \(-\dfrac{46}{3}< x< -\dfrac{13}{7}\)
Lại có \(-\dfrac{46}{3}\le-15\) và \(-\dfrac{13}{7}\ge-2\)
Suy ra \(-15\le x\le-2\), x ϵ Z
b) Ta có \(-4\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{6}\right)=-\dfrac{13}{3}\cdot\dfrac{1}{3}=-\dfrac{13}{9}\) và \(-\dfrac{2}{3}\left(\dfrac{1}{3}-\dfrac{1}{2}-\dfrac{3}{4}\right)=-\dfrac{2}{3}\cdot\dfrac{-11}{12}=\dfrac{11}{18}\)
Do đó \(-\dfrac{13}{9}< x< \dfrac{11}{18}\)
Lại có \(-\dfrac{13}{9}\le-1\) và \(\dfrac{11}{18}\ge0\)
Suy ra \(-1\le x\le0\), x ϵ Z
\(\dfrac{2}{3}-\left|x-2,4\right|=\dfrac{1}{2}\)
\(\left|x-2,4\right|=\dfrac{2}{3}-\dfrac{1}{2}\)
\(\left|x-2,4\right|=\dfrac{1}{6}\)
*) Với \(x\ge2,4\) ta có:
\(x-2,4=\dfrac{1}{6}\)
\(x=\dfrac{1}{6}+2,4\)
\(x=\dfrac{77}{30}\) (nhận)
*) Với \(x< 2,4\) ta có:
\(x-2,4=-\dfrac{1}{6}\)
\(x=-\dfrac{1}{6}+2,4\)
\(x=\dfrac{67}{30}\) (nhận)
Vậy \(x=\dfrac{67}{30};x=\dfrac{77}{30}\)