Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số đo 3 góc A;B;C lần lượt là a;b;c
Áp dụng t/c của dãy tỉ số bằng nhau ta có
=>\(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}=\frac{a+b+c}{1+2+3}=\frac{180"}{6}=30"\)
=>a=30"
b=60"
c=90"
Vậy....................
Chuk bn hok tốt
ta có:
A:B:C=1:2:3
\(\Rightarrow\frac{A}{1}=\frac{B}{2}=\frac{C}{3}\)và \(A+B+C=180\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{A}{1}=\frac{B}{2}=\frac{C}{3}=\frac{A+B+C}{1+2+3}=30\)
\(\Rightarrow\frac{A}{1}=30\Rightarrow A=30\)
\(\frac{B}{2}=30\Rightarrow B=60\)
\(\frac{C}{3}=30\Rightarrow C=90\)
Vậy A=30 độ ; B=60 độ : C=90 độ
Ta có tam giác ABC cân tại A
-> góc B = Góc C
mà góc B = 50 độ
-> góc C = 50 độ
Xét tam giác ABC có
góc A + góc B + góc C= 180 độ ( định lý tổng 3 góc trong tam giác)hay góc A + 50 + 50= 180 độ
góc A+ 100=180
góc A = 180-100
góc A = 80 độ
Xét tam giác ABC cân tại A có:
<B=<C=50 độ
=> <A= 180 độ -(<B+ <C)( Tổng 3 góc trong của tam giác)
=> <A= 180 độ -2.50 độ= 80 độ
P/S: cái "<" là chỉ góc nha bn
Ta có
\(AB=AC\\ \Rightarrow\Delta ABC.cân.tại.A\)
Xét \(\Delta ABC\) có \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
Mà \(\Delta\)ABC cân tại A nên:
\(\widehat{B}=\widehat{C}\\ \Rightarrow\widehat{B}=\dfrac{180^o-\widehat{A}}{2}=\dfrac{100}{2}=50^o\)
Do \(\Delta\)ABC cân nên AB = AC và không có cạnh lớn nhất
Do tổng 3 góc của 1 tam giác bằng `180^o` nên:
`a, A:B:C=2:7:1`
`<=> A/2 = B/7 = C/1 = (A+B+C)/(2+7+1)=180/10=18`.
`=> A/2=18 <=> A=36^o`.
`B/7=18 <=> B=18*7=126^o`.
`C/1=18 <=> C=18^o`.
Vậy ...
`b, hat(A) + hat(C) = 180^o- hat(B)`
`<=> hat(A)+hat(C)=105^o`
Áp dụng tính chất dãy tỉ số bằng nhau:
`A/3=C/2=(A+C)/(3+2)=105/5=21.`
`=> A/3=21 <=> A=61^o`.
`=> C/2=21 <=> C=42^o`.
Vậy...
a) Gọi a, b, c lần lượt là số đo góc A, góc B và góc C
Do a : b : c = 2 : 7 : 1 nên:
a/2 = b/7 = c/1
Lại có: a + b + c = 180⁰ (tổng ba góc trong tam giác ∆ABC)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
a/2 = b/7 = c/1 = (a + b + c)/(2 + 7 + 1) = 180/10 = 18
a/2 = 18 ⇒ a = 18.2 = 36
b/7 = 18 ⇒ b = 18.7 = 126
c/1 = 18 ⇒ c = 18
Vậy số đo các góc A, góc B, góc C lần lượt là: 36⁰; 126⁰; 18⁰
b) Gọi a, c lần lượt là số đo các góc A và góc C
Do a : c = 3 : 2
⇒ a/3 = c/2
Lại có:
a + c = 180⁰ - 75⁰ = 105⁰ (tổng ba góc trong tam giác ∆ABC)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
a/3 = c/2 = (a + b)/(3 + 2) = 105/5 = 21
a/3 = 21 ⇒ a = 21.3 = 63
b/2 = 21 ⇒ b = 21.2 = 42
Vậy số đo các góc A, góc B, góc C lần lượt là: 63⁰; 75⁰; 42⁰