Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lấy M trong ΔABC sao cho ΔMBC đều
=>góc MBC=góc MCB=góc ACB-góc MCB=20 độ
Ta có:AB=AC
MB=MC
DO đó: AM là trung trực của BC
mà ΔBAC cân tại A
nên AM là phân giác của góc BAC
=>góc BAM=góc CAM=20/2=10 độ
=>góc AMC=150 độ
Xét ΔCMA và ΔADC có
CM=AD(=BC)
góc MCA=góc DAC
AC chung
Do đó: ΔCMA=ΔADC
=>góc ADC=góc CMA=150 độ
=>góc BDC=30 độ
Bài 5:
Tgiac ABC vuông cân tại A => góc CBA = 45 độ
Xét góc CBA là góc ngoài tgiac DBC => góc CBA = góc D + DCB
Xét tgiac DBC có DB = BC => tgiac DBC cân tại B => góc D = góc DBC
=> góc D = 45/2 = 22,5 độ
và góc ACD = 22,5 + 45 = 67,5 độ
Vậy số đo các góc của tgiac ACD là ...
Bài 6:
Tgiac ABC cân tại B, góc B = 100 độ => góc A = góc C = 40 độ
Xét tgiac ABD có AB = AD => tgiac ABD cân tại A => góc EDB (ADB) = (180-40)/2 =70 độ
cmtt với tgiac CBE => góc DEB = 70 độ
=> góc DBE = 180-70-70 = 40 độ
Bài 7:
Xét tgiac ABC cân tại A => góc BAC = 180 - 2.góc C => 2.(90 - góc C)
Xét tgiac BHC vuông tại H => góc CBH = 90 - góc C
=> đpcm
Bài 8: mai làm hihi
someone help me ,please
( Lưu ý : hình chỉ mang tính minh họa )
Chứng minh
Ta thấy cả 2 tam giác ABD và tam giác ACD không thể cùng cân ở A ( vì AB=AD=AC, nên B,D,C nằm trên một đường tròn tâm A bán kính AB do đó B,C,D không thẳng hàng ).
Nếu cả hai tam giác ABD và ACD cùng cân ở D thì tam giác ABC sẽ vuông ở A ( Mâu thuẫn với giả thiết \(\widehat{A}\)= 750 )
Nếu tam giác ABD cân ở B thì AB=BD , tam giác ACD cân ở C thì AC=CD khi đó AB+AC=BD+DC hay AB+AC=BC ( vô lý vì trong 1 tam giác thì tổng 2 cạnh lớn hơn 1 cạnh )
Vì vậy tam giác ABD sẽ cân ở A và tam giác ACD phải cân ở D
Vì tam giác ABD cân ở A nên \(\widehat{B}=\widehat{D1}\left(tinhchat\right)\)
Vì tam giác ACD cân ở D nên \(\widehat{A1}=\widehat{C}\left(tinhchat\right)\)
Ta có \(\widehat{D1}\)là góc ngoài của tam giác ABC tại D
\(\Rightarrow\widehat{D1}=\widehat{A1}+\widehat{C}\left(tinhchat\right)\)mà \(\widehat{A1}=\widehat{C}\left(cmt\right)\)
\(\Rightarrow\widehat{D1}=2.\widehat{A1}\)mà \(\widehat{B}=\widehat{D1}\left(cmt\right)\)
\(\Rightarrow\widehat{B}=2.\widehat{A1}\)
Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=\widehat{A1}+\widehat{A2}+\widehat{A1}+2.\widehat{A1}\)
\(180^0=4.\widehat{A1}+\widehat{A2}\)(1)
Lại có : \(\widehat{A1}+\widehat{A2}=75^0\)(2)
Lấy (1) trừ (2) ta được: \(3.\widehat{A1}=105^0\)
\(\widehat{A1}=35^0\)
\(\Rightarrow\widehat{C}=35^0\)( vì \(\widehat{C}=\widehat{A1}\))
Xét tam giác ABC có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)( định lý )
\(\widehat{B}=70^0\)
Vậy ...