K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2023

haizz

16 tháng 11 2023

EZ NUB BRO CRY :>

Ta có : (a+b)2=2(a2+b2)

⇔a2+2ab+b2=2a2+2b2

⇔2ab=a2+b2

⇔a2-2ab+b2=0

⇔(a-b)2=0

⇔a-b=0

⇔a=b (đpcm)

học lại bảng hàng đẳng thức đáng nhớ đi nhá bro :>

31 tháng 7 2019

Biến đổi vế trái ta có:

VT = (a + b)( a 2  – ab +  b 2 ) + (a – b)( a 2  + ab +  b 2 )

=  a 3  +  b 3  +  a 3  –  b 3  = 2 a 3  = VP

Vế trái bằng vế phải nên đẳng thức được chứng minh.

Ta có: \(2\left(a^2+b^2\right)=\left(a+b\right)^2\)

\(\Leftrightarrow2a^2+2b^2-a^2-2ab-b^2=0\)

\(\Leftrightarrow a^2-2ab+b^2=0\)

\(\Leftrightarrow\left(a-b\right)^2=0\)

\(\Leftrightarrow a-b=0\)

hay a=b

17 tháng 1 2022
Ngu kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

(a-b)^2=(a-b)(a-b)=a^2-ab-ab+b^2=a^2-2ba+b^2

(a-b)(a+b)=a^2+ab-ab-b^2=a^2-b^2

(a+3)^3=(a+b)^2*(a+b)

=(a^2+2ab+b^2)(a+b)

=a^3+a^2b+2a^2b+2ab^2+b^2a+b^3

=a^3+3a^2b+3ab^2+b^3

12 tháng 5 2021

Với mọi số thực:
`(a-b)^2>=0`
`<=>a^2-2ab+b^2>=0`
`<=>a^2+b^2>=2ab`
`<=>2(a^2+b^2)>=a^2+2ab+b^2`
`<=>2(a^2+b^2)>=(a+b)^2=4`
`<=>a^2+b^2>=2(đpcm)`
Dấu "=" `<=>a=b=1`

\(\left(a+b\right)^2=2\left(a^2+b^2\right)\Rightarrow a^2+2ab+b^2=2a^2+2b^2\Rightarrow a^2-2ab+b^2=0\Rightarrow\left(a-b\right)^2=0\Rightarrow a-b=0\Rightarrow a=b\left(đpcm\right)\)

26 tháng 7 2021

\(\left(a+b\right)^2=2\left(a^2+b^2\right)\\ \Leftrightarrow a^2+b^2+2ab=2a^2+2b^2\\ \Leftrightarrow a^2-2ab+b^2=0\\ \Leftrightarrow\left(a-b\right)^2=0\\ \Leftrightarrow a-b=0\\ \Leftrightarrow a=b\)

18 tháng 7 2023

2.(a2 +b2)= (a-b)2 
=>\(2a^2+2b^2=a^2-2ab+b^2\)

=>\(a^2+2ab+b^2=0\)

=>\(\left(a+b\right)^2=0\)

=>a=-b

Vậy a và b là 2 số đối nhau

5 tháng 1 2017

7 tháng 6 2021

a)Có \(a^2+1\ge2a\) với mọi a; \(b^2+1\ge2b\) với mọi b

Cộng vế với vế \(\Rightarrow a^2+b^2+2\ge2\left(a+b\right)\)

Dấu = xảy ra <=> a=b=1

b) Áp dụng BĐT bunhiacopxki có:

\(\left(x+y\right)^2\le\left(1+1\right)\left(x^2+y^2\right)\Leftrightarrow\left(x+y\right)^2\le2\)

\(\Leftrightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)

\(\Rightarrow\left(x+y\right)_{max}=\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=\dfrac{\sqrt{2}}{2}\)

\(\left(x+y\right)_{min}=-\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=-\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=-\dfrac{\sqrt{2}}{2}\)

c) \(S=\dfrac{1}{ab}+\dfrac{1}{a^2+b^2}=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{1}{2ab}\)

Với x,y>0, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) (1)

Thật vậy (1) \(\Leftrightarrow\dfrac{y+x}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)\(\Leftrightarrow\left(x-y\right)^2\ge0\) (lđ)

Áp dụng (1) vào S ta được:

\(S\ge\dfrac{4}{a^2+b^2+2ab}+\dfrac{1}{2ab}\)

Lại có: \(ab\le\dfrac{\left(a+b\right)^2}{4}\) \(\Leftrightarrow2ab\le\dfrac{\left(a+b\right)^2}{2}\Leftrightarrow2ab\le\dfrac{1}{2}\)\(\Rightarrow\dfrac{1}{2ab}\ge2\)

\(\Rightarrow S\ge\dfrac{4}{\left(a+b\right)^2}+2=6\)

\(\Rightarrow S_{min}=6\Leftrightarrow a=b=\dfrac{1}{2}\)