K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2023

1 - 1 = 0

10 tháng 4 2016

TOÁN LỚP 6 ĐÓ

10 tháng 4 2016

tui ko rảnh để giết time

21 tháng 2 2016

\(\left[6.\left(-\frac{1}{3}\right)^2-3.\left(-\frac{1}{3}\right)+1\right]:\left(-\frac{1}{3}-1\right)\)

\(=\left[6.\frac{1}{9}-\left(-1\right)+1\right]:\left(-\frac{4}{3}\right)\)

\(=\left[\frac{2}{3}+1+1\right]:\left(-\frac{4}{3}\right)\)

\(=\frac{8}{3}.\frac{-3}{4}\)

\(=-2\)

21 tháng 2 2016

   help me       T×m mét sè cã ba ch÷ sè, biÕt  r»ng sè ®ã chia hÕt cho 18 vµ c¸c ch÷ sè cña nã tØ lÖ víi ba sè 1, 2 vµ 3.

8 tháng 4 2016

\(A=\frac{1}{2}\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\frac{1}{2}\left(x+y\right)^2=\frac{1}{2}\)

Min A= 1/2  khi x = y =1/2

8 tháng 4 2016

Vì x+y=1

=>y=1-x

Ta có: \(A=x^2+y^2=x^2+\left(1-x\right)^2=x^2+1\left(1-x\right)-x\left(1-x\right)=x^2+1-x-x+x^2\)

\(A=2x^2-2x+1=2.\left(x^2-x+\frac{1}{2}\right)\)

\(A=2.\left(x^2-\frac{1}{2}x-\frac{1}{2}x+\frac{1}{4}-\frac{1}{4}+\frac{1}{2}\right)=2\left[x\left(x-\frac{1}{2}\right)-\frac{1}{2}\left(x-\frac{1}{2}\right)+\frac{1}{4}\right]\)

\(A=2\left[\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\right]=2\left(x-\frac{1}{2}\right)^2+\frac{1}{2}\)

\(2\left(x-\frac{1}{2}\right)^2>=0\) với mọi x

=>\(2\left(x-\frac{1}{2}\right)^2+\frac{1}{2}>=\frac{1}{2}\) với mọi x

Dấu "=" xảy ra <=>\(x=\frac{1}{2}\);mà x+y=1=>\(y=\frac{1}{2}\)

Khi đó GTNN của A=x2+y2 là 1/2 tại \(x=y=\frac{1}{2}\)

 

 

Ta có:

\(\left\{{}\begin{matrix}\left|x+\frac{1}{2}\right|\ge0\\\left|x+\frac{1}{6}\right|\ge0\\...\\\left|x+\frac{1}{110}\right|\ge0\end{matrix}\right.\)

\(\Rightarrow\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{110}\right|\ge0\)

\(\Rightarrow11x\ge0\Rightarrow x\ge0\)

\(\Rightarrow\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{110}\right|\)

=\(x+\frac{1}{2}+x+\frac{1}{6}+...+x+\frac{1}{110}\)

\(=10x+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{110}\right)\)

Đặt \(A=\frac{1}{2}+\frac{1}{6}+...+\frac{1}{110}\)

\(\Rightarrow A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{11-10}{10.11}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\)

\(\Rightarrow A=1-\frac{1}{11}=\frac{10}{11}\)

\(\Rightarrow10x+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{110}\right)=10x+A=10x+\frac{10}{11}=11x\)

\(\Rightarrow\frac{10}{11}=11x-10x\)

\(\Rightarrow x=\frac{10}{11}\)

a: \(=\dfrac{7}{5}\cdot\dfrac{15}{49}-\dfrac{12+10}{15}:\dfrac{11}{5}\)

\(=\dfrac{3}{7}-\dfrac{22}{15}\cdot\dfrac{5}{11}=\dfrac{3}{7}-\dfrac{2}{3}=\dfrac{9-14}{21}=\dfrac{-5}{21}\)

b: =>2,8x-32=-60

=>2,8x=-28

hay x=-10

22 tháng 2 2016

lồnucche

Ta có:

\(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\)

\(=\frac{1}{4}+\left(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\right)\)

Đặt \(B=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\)

\(B=\left(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}\right)+\left(\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\right)\)

Giả sử tất cả các số hạng của B đều bằng \(\frac{1}{6^2}\)

\(\Rightarrow B=6.\frac{1}{6^2}=\frac{6}{36}=\frac{1}{6}<\frac{1}{4}\)

Do đó \(B<\frac{1}{4}\)

\(\Rightarrow A=\frac{1}{4}+B<\frac{1}{4}+\frac{1}{4}=\frac{1}{2}\)

Vậy \(A<\frac{1}{2}\)

 

26 tháng 4 2016

x . \(\frac{1}{2}\)- x.\(\frac{2}{3}\) + x.\(\frac{3}{4}\)- x. \(\frac{5}{6}\) = \(\frac{5}{6}\) -\(\frac{3}{4}\) + \(\frac{2}{3}\) -\(\frac{1}{2}\)

x . \(\frac{1}{2}\)- x.\(\frac{2}{3}\) + x.\(\frac{3}{4}\)- x. \(\frac{5}{6}\) = \(\frac{10}{12}\)-\(\frac{9}{12}\)+\(\frac{8}{12}\)-\(\frac{6}{12}\)

x . \(\frac{1}{2}\)- x.\(\frac{2}{3}\) + x.\(\frac{3}{4}\)- x. \(\frac{5}{6}\)\(\frac{1}{4}\)
=> x. (\(\frac{1}{2}\)\(\frac{2}{3}\) + \(\frac{3}{4}\)\(\frac{5}{6}\)) = \(\frac{1}{4}\)
=> x.( \(\frac{6}{12}\)\(\frac{8}{12}\)+\(\frac{9}{12}\)-\(\frac{10}{12}\))= \(\frac{1}{4}\)
=> x. \(\frac{-1}{4}\)=\(\frac{1}{4}\)
=> x = \(\frac{1}{4}\)\(\frac{-1}{4}\)
=> x = -1
26 tháng 4 2016

=>x.(1/2-2/3+3/4)=1/4

=>x.7/12=1/4

=>x=1/4:7/12

=>x=1/4.12/7

=>x=3/7

 

21 tháng 3 2016

Để (n+4) chia hết cho (n+1)

Mà : (n+4)chia hết cho (n+1)

=> (n+1+3) chia hết cho (n+1)

Mà (n+1) chia hết cho (n+1)

Nên suy ra 3 chia hết cho (n+1)

=> n+1\(\in\)Ư(3) = \(\left\{1;3\right\}\)

Ta có bảng :

n+113
n02

Vậy n=0

hoặc n=2

21 tháng 3 2016

ta co :n+1 chia het cho n+1

=> (n+4)-(n+1) chia het cho n+1

           3 chia het cho n+1

=> n+1 thuoc uoc cua 3={1;3;-1;-3}

n thuoc{0;2;-2;-4}

6 tháng 4 2016

\(S=7(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{61}-\frac{1}{63}) \)

\(S=7(\frac{1}{3}-\frac{1}{63})\)

\(S=7(\frac{21}{63}-\frac{1}{63}) \)

\(S=7.\frac{20}{63}\)

\(S=\frac{20}{9}\)

Do đó:\(S<\frac{5}{2}\)

6 tháng 4 2016

S=\(\frac{2.7}{3.5}+\frac{2.7}{5.7}+\frac{2.7}{7.9}+....+\frac{2.7}{61.63}\)\(\frac{5}{2}\)

S=7.(\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+.....-\frac{1}{63}\)) và\(\frac{5}{2}\)

S=7.(\(\frac{1}{3}-\frac{1}{63}\)) và\(\frac{5}{2}\)

S=7.\(\frac{20}{63}\)\(\frac{5}{2}\)

=>S=\(\frac{20}{9}\)so với \(\frac{5}{2}\)

=>S=\(\frac{40}{18}\)\(\frac{45}{18}\)

=>S<\(\frac{5}{2}\)