Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 3n + 2 chia hết cho n - 1
\(\Rightarrow\) 3n - 3 + 5 chia hết cho n - 1
\(\Rightarrow\) 3(n - 1) + 5 chia hết cho n - 1
\(\Rightarrow\) 5 chia hết cho n - 1
\(\Rightarrow\) n - 1 \(\in\) Ư(5) = {-1; 1; -5; 5}
\(\Rightarrow\) n \(\in\) {0; 2; -4; 6}
b) 3n + 24 chia hết cho n - 4
\(\Rightarrow\) 3n - 12 + 36 chia hết cho n - 4
\(\Rightarrow\) 3(n - 4) + 36 chia hết cho n - 4
\(\Rightarrow\) 36 chia hết cho n - 4
\(\Rightarrow\) n - 4 \(\in\) Ư(36) = {-1; 1; -2; 2; -3; 3; -4; 4; -6; 6; -9; 9; -12; 12; -18; 18; -36; 36}
\(\Rightarrow\) n \(\in\) {-3; 5; 4; 6; -1; 7; 0; 8; -2; 10; -5; 13; -8; 16; -14; 22; -32; 40}
c) 3n + 5 chia hết cho n + 1
\(\Rightarrow\) 3n + 3 + 2 chia hết cho n + 1
\(\Rightarrow\) 3(n + 1) + 2 chia hết cho n + 1
\(\Rightarrow\) 2 chia hết cho n + 1
\(\Rightarrow\) n + 1 \(\in\) Ư(2) = {-1; 1; -2; 2}
\(\Rightarrow\) n \(\in\) {0; 2; -1; 3}
11,
a, 4x-3\(\vdots\) x-2 1
x-2\(\vdots\) x-2\(\Rightarrow\) 4(x-2)\(\vdots\) x-2\(\Rightarrow\) 4x-8\(\vdots\) x-2 2
Từ 1 và 2 ta có:
(4x-3)-(4x-8)\(\vdots\) x-2
\(\Rightarrow\) 4x-3-4x+8\(\vdots\) x-2
\(\Rightarrow\) 5 \(\vdots\) x-2
\(\Rightarrow\) x-2\(\in\) Ư(5)
\(\Rightarrow\) x-2\(\in\){-5;-1;1;5}
\(\Rightarrow\) x\(\in\) {-3;1;3;7}
Vậy......
Phần b và c làm tương tự như phần a pn nhé!
2n-3 chia hết cho n+1
=> 2n+2-5 chia hết cho n+1
=> 2(n+1)-5 chia hết cho n+1
Mà 2(n+1) chia hết cho n+1 => 5 chia hết cho n+1
=> n+1 thuộc Ư(5) ={1;-1;5;-5}
TH1: n+1=1 => n=0 thuộc Z
TH2: n+1=-1 => n=-2 thuộc Z
TH3: n+1=5 => n=4 thuộc Z
TH4: n+1=-5 => n=-6 thuộc Z
=> n thuộc {0;-2;4;6}
6n+3=6n+12-9=(6n+12)-9
để 6n+3 chia hết cho3n+6 thì
(6n+12)-9 chia hết cho3n+6
2(3n+6)-9 chia hết cho3n+6
vì 2(3n+6)chia hết cho3n+6
nên- 9 phảichia hết cho3n+6
3n+6 thuộc ước của -9
3n+6 thuộc -1;-9;-3;1;3;9
mà n làSTN nên 3n+6 là STN;3n+6>=6
3n+6=9
3n=3
n=1
ta có:\(\frac{6n+3}{3n+6}=\frac{6n+12-9}{3n+6}=\frac{2\left(3n+6\right)-9}{3n+6}=2-\frac{9}{3n+6}\)
Để 6n + 3 chia hết cho 3n + 6 thì 9 chia hết cho 3n + 6
=> 3n + 6 ( Ư )9
=> 3n = 6 ( 1 ,3,9)
=>3n = 3
=>n= 3 : 3
=>n= 1
Ta có :
n2 - n - 1 = n.(n - 1) - 1 chia hết cho (n - 1)
Do n.(n - 1) chia hết cho (n - 1) nên suy ra 1 chia hết hết cho (n - 1)
nên (n - 1) \(\in\) Ư(1) = {-1; 1}
\(\Leftrightarrow\) n \(\in\) {0; 2}
Theo đề, ta có :
\(\left(n^2-n-1\right)⋮\left(n-1\right)\)
<=> n( n - 1) -1 \(⋮\) ( n - 1)
<=> 1 \(⋮\) ( n - 1) ( vì n( n - 1) \(⋮\) ( n - 1)
<=> \(\left(n-1\right)\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(n-1=1\Rightarrow n=2\)
\(n-1=-1\Rightarrow n=0\)
Vậy \(n\in\left\{0;2\right\}\)thì (n2 - n - 1) \(⋮\) (n - 1)
a) 4n-5=4n+8-13=4(n+2)-13 chia hết cho 13 khi và chỉ khi n+2 chia hết cho 13. Điều này có nghĩa là n=13k-2.
b) 5n+1=5n-20+21=5(n-4)+21 chia hết cho 7 khi và chỉ khi n-4 chia hết cho 7. Điều này có nghĩa là n=7k+4
c) 25n+3=25n-50+53=25(n-2)+53 chia hết cho 53 khi và chỉ khi n-2 chia hết cho 53. Điều này có nghĩa là n=53k+2
Ta có: n = 2x \(\times\) 3y \(\times\)53+z có (x+1)(y+1)(4+z) = 16
\(\Rightarrow\)z = 0
x = 1
y = 1
\(\Rightarrow\) n = 2 \(\times\) 3 \(\times\) 53 = 750.
Ta có : 4n - 5 chia hết cho n - 3
=> 4n - 12 + 17 chia hết cho n - 3
=> 4(n-3) + 17 chia hết cho n - 3
=> 17 chia hết cho n - 3
=> n - 3 \(\in\) Ư(17) = {+1;+17}
Với n - 3 = 1 => n = 4
Với n - 3 = -1 =. n = 2
Với n - 3 = 17 => n = 20
Với n - 3 = -17 => n = -14
Vậy n \(\in\) {4;2;20;-14}
Ta có : n + 3 : n -1
=> n - 1 + 4 : n - 1
=> 4 chia hết cho n - 1 ( Vì n - 1 chia hết cho n -1)
=> n - 1 \(\in\) Ư (4)
=> n - 1 \(\in\) {1 ; 2 ; 4 ; -1 ; -2 ; -4}
TH1: n - 1 = 1 TH4 : n - 1 = - 1
=> n = 2 => n = 0
TH2 : n - 1 = 2 TH5 : n - 1 = -2
=> n = 3 => n = -1
TH3 : n - 1 = 4 TH6: n - 1 = -4
=> n = 5 => n = -3
Vậy n \(\in\) {2 ; 3 ; 5 ; 0 ; -1 ; - 3}
Để n+3 chia hết cho n-1
Thì n+4-1 chia hết cho n-1
Mà n-1 chia hết cho n-1
Nên suy ra 4 phải chia hết cho n-1
Khi n-1 thuộc Ư(4)={1;-1;2;-2;4;-4}
Ta có bảng sau:
n-1 | 1 | 2 | 4 | -1 | -2 | -4 |
n | 2 | 3 | 5 | 0 | -1 |
-3 |
Vậy n=2 ; n=3 ;n=5 ;n= 0 ; n=-1 hoặc n= -3
Để (n+4) chia hết cho (n+1)
Mà : (n+4)chia hết cho (n+1)
=> (n+1+3) chia hết cho (n+1)
Mà (n+1) chia hết cho (n+1)
Nên suy ra 3 chia hết cho (n+1)
=> n+1\(\in\)Ư(3) = \(\left\{1;3\right\}\)
Ta có bảng :
Vậy n=0
hoặc n=2
ta co :n+1 chia het cho n+1
=> (n+4)-(n+1) chia het cho n+1
3 chia het cho n+1
=> n+1 thuoc uoc cua 3={1;3;-1;-3}
n thuoc{0;2;-2;-4}