Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thiếu đề. tích hay tổng hay hiệu hay thương của 3 số tự nhiên ... ?
Gọi a, a+1, a+2 lần lượi là 3 số nguyên liên tiếp ( a thuộc Z)
Tích a(a+1)(a+2) chia hết cho 3 khi một trong ba số trên chia hết cho 3.
Một số chia cho 3 thì có 3 trường hợp:
- a chia hết cho 3
- giả sử a chia 3 dư 1 thì (a+1) chia hết cho 3 => tích a(a+1)(a+2) chia hết cho 3.
- giả sử a chia 3 dư 2 thì (a+2) chia hết cho 3 => tích a(a+1)(a+2) chia hết cho 3.
=> Tích a(a+1)(a+2) luôn chia hết cho 3. (1)
Mà 3 trong 3 số nguyên liên tiếp luôn có 1 số chia hết cho 2 (2)
Vì ƯCLN(3;2) 1 nên từ (1) và (2) suy ra 3 số nguyên liên tiếp chia hết cho (2 . 3) = 6
\(a^7-a\\ =a\left(a^6-1\right)\\ =a\left(a^3-1\right)\left(a^3+1\right)\\ \)
Lập phương của 1 số chia 7 dư 0,1,6
Nếu a chia hết cho 7 => đpcm
Nếu a không chia hết cho 7 => a^3 chia 7 dư 1,6
Nếu a^3 chia 7 dư 1 => a^3-1 chia hết 7 (đpcm)
Nếu a^3 chia 7 dư 6 => a^3+1 chia hết cho 7 => đpcm
a)Goi day so la a; a+1; a+2; ...; a+n
Dem tung so cua day so tren chia cho n thi co 1 so chi het cho n
Goi so do la a+k (k thuoc N va k>=1 va k <=n)
=> (a+1)(a+2)...(a+k)...(a+n-1)(a+n) chia het cho n
b)Tong cua n so nguyen lien tiep khong chia het cho n vi gia su n=6 thi 1+2+3+4+5+6=21 khong chia het cho 6
Xin chém:(ko cần Đi-rích-lê nhưng cũng gần giống)
Gọi 39 số liên tiếp đó là x1;x2;x3;...;x39x1;x2;x3;...;x39 và xi=xi−1+1xi=xi−1+1 với 2⩽xi⩽392⩽xi⩽39
Trong 39 số đó chắc chắn tồn tại 1 số nhỏ nhất chia hết cho 10 và 39 số đó đều khác 0.
Gọi số nhỏ nhất chia hết cho 10 đó là xjxj và j⩽10j⩽10
Vậy có ít nhất 29 số lớn hơn xjxj.
Gọi tổng các chữ số của xjxj là a
Xét 11 số xj;xj+1;xj+2;...;xj+9;xj+19;xj+29xj;xj+1;xj+2;...;xj+9;xj+19;xj+29 có tổng các chữ số lần lượt là a;a+1;a+2;...;a+9;a+10;a+11
Vì đó là 11 số liên tiếp nên tồn tại 1 số trong dãy a;a+1;a+2;...;a+9;a+10;a+11 chia hết cho 11
Vậy ta có đpcm