K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2023

B = 2 + 2² + 2³ + 2⁴ + ... + 2⁹⁹ + 2¹⁰⁰

= 2 + (2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷) + ... + (2⁹⁸ + 2⁹⁹ + 2¹⁰⁰)

= 2 + 2².(1 + 2 + 2²) + 2⁵.(1 + 2 + 2²) + ... + 2⁹⁸.(1 + 2 + 2²)

= 2 + 2².7 + 2⁵.7 + ... + 2⁹⁸.7

= 2 + 7.(2² + 2⁵ + ... + 2⁹⁸)

Ta có:

2 không chia hết cho 7

7.(2² + 2⁵ + ... + 2⁹⁸) ⋮ 7

Vậy B không chia hết cho 7

19 tháng 10 2023

Dãy số B được tạo thành bằng cách cộng các lũy thừa của số 2 từ 2^1 đến 2^100. Ta có thể viết B như sau:

B = 2^1 + 2^2 + 2^3 + … + 2^99 + 2^100

Chúng ta có thể nhận thấy rằng mỗi số trong dãy B đều chia hết cho 2. Điều này có nghĩa là mỗi số trong dãy B đều có dạng 2^n, với n là một số nguyên không âm.

Nếu chúng ta xem xét các số trong dãy B theo modulo 7 (lấy phần dư khi chia cho 7), chúng ta sẽ thấy một chu kỳ lặp lại. Cụ thể, chu kỳ lặp lại này có độ dài là 6 và gồm các giá trị: 2, 4, 1, 2, 4, 1, …

Vì vậy, để tính tổng của dãy B, chúng ta có thể chia tổng số lũy thừa của 2 (tức là 100) cho 6, lấy phần dư và tìm giá trị tương ứng trong chu kỳ lặp lại. Trong trường hợp này, 100 chia cho 6 dư 4, vì vậy chúng ta sẽ lấy giá trị thứ 4 trong chu kỳ lặp lại, tức là 2.

Vậy, B khi chia cho 7 sẽ có phần dư là 2. Điều này có nghĩa là B không chia hết cho 7.

15 tháng 1 2017

a) = (-1+3) + (-5+7) + ...+ (-97+99)

= 2 + 2 + 2 + ....+ 2

= 2.(25) = 50

b) = (1+2-3-4)+...+(97+98-99-100)

= 4 + ...+ 4 

= 4 x 25 = 25

Mình cũng muốn giúp lắm

Nhưng mình mới học lớp 5 thôi

Thông cảm

14 tháng 8 2015

A=1+2+3+......+100

Số số hạng của A là:

  (100-1):1+1=100(số)

Tổng A bằng :

(100+1).100:2=5050

Tổng A chia hết cho 2 và 5 vì có chữ số tận cùng là 0

Tổng A không chia hết cho 3 vì tổng các chữ số không chia hết cho 3

 

 

 

Trùng hợp quá , mk cũng đi học ngày 15/8

1 tháng 11 2021

\(2+2^2+...+2^{100}\\ =\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\\ =2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\\ =\left(1+2\right)\left(2+2^3+...+2^{99}\right)\\ =3\left(2+2^3+...+2^{99}\right)⋮3\)

1 tháng 11 2021

Mk đang hỏi tại sao lại có phần (1+2) mà bạn. Bạn biết thì chỉ mk với

26 tháng 10 2021

\(A=3+3^2+3^3+...+3^{99}+3^{100}\)

\(3A=3^2+3^3+3^4+...+3^{100}+3^{101}\)

\(3A-A=\left(3^2+3^3+3^4+...+3^{100}+3^{101}\right)-\left(3+3^2+3^3+...+3^{99}+3^{100}\right)\)

\(2A=3^{101}-3\)

\(A=\dfrac{3^{101}-3}{2}\)

2 tháng 1 2017

a, x^2 - 2x + 7 

= x( x-2) + 7

ta có x(x-2) chia hết cho x- 2 

nên để x^2 - 2x + 7 chia hết cho 2 

thì 7 chia hết cho x- 2 

=> x-2 thuộc ước của 7 

đến đây tự làm tiếp

2 tháng 1 2017

làm chi tiết ra dài dòng lắm

10 tháng 8 2023

Bài 1:

B = 1 + 2 + 3 + 4 + ... + 2001

= (2001 + 1) . (2001 - 1 + 1) : 2

= 2002 . 2001 : 2

= 2003001

Vậy B không chia hết cho 2

Bài 2:

*) Số 10¹⁰ + 8 = 10000000008

- Có chữ số tận cùng là 8 nên chia hết cho 2

- Có tổng các chữ số là 1 + 8 = 9 nên chia hết cho cả 3 và 9

Vậy 10¹⁰ + 8 chia hết cho cả 2; 3 và 9

*) 10¹⁰⁰ + 5 = 1000...005 (99 chữ số 0)

- Có chữ số tận cùng là 5 nên chia hết cho 5

- Có tổng các chữ số là 1 + 5 = 6 nên chia hết cho 3

Vậy 10¹⁰⁰ + 5 chia hết cho cả 3 và 5

b) 10⁵⁰ + 44 = 100...0044 (có 48 chữ số 0)

- Có chữ số tận cùng là 4 nên chia hết cho 2

- Có tổng các chữ số là 1 + 4 + 4 = 9 nên chia hết cho 9

Vậy 10⁵⁰ + 44 chia hết cho cả 2 và 9

10 tháng 8 2023

B1 :

\(B=1+2+3+4+...+2001\)

\(B=\left[\left(2001-1\right):1+1\right]\left(2001+1\right):2\)

\(B=2001.2002:2=2003001\)

- Tận cùng là 1 nên B không chia hết cho 2

- Tổng các chữ số là 2+3+1=6 chia hết cho 3 nên B chia hết cho 3, không chia hết ch0 9

- Ta lấy \(2.3=6+0=6.3+0-14=4.3+3-14=1.3+0=3.3+0-7=2.3+1=7⋮7\) \(\Rightarrow B⋮7\)

 

14 tháng 2 2018

\(a)\) Đặt \(A=5+5^2+5^3+5^4+...+5^{99}+5^{100}\)ta có : 

\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)

\(A=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{99}\left(1+5\right)\)

\(A=5.6+5^3.6+...+5^{99}.6\)

\(A=6.\left(5+5^3+...+5^{99}\right)\) \(⋮\) \(6\)

Vậy \(A⋮6\)

14 tháng 2 2018

\(b)\) Đặt \(B=2+2^2+2^3+2^4+...+2^{99}+2^{100}\) ta có : 

\(B=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(B=2\left(1+2+4+8+16\right)+...+2^{96}\left(1+2+4+8+16\right)\)

\(B=2.31+...+2^{96}.31\)

\(B=31.\left(2+2^6+...+2^{96}\right)\) \(⋮\) \(31\)

Vậy \(B⋮31\)

Năm mới zui zẻ ^^