Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-8(-7)+(-3).(-5)-(-4).9+2(-6)
=35+15-(-36)+(-12)
=74
15(-3)-(-7).(+2)+4.(-6)-7(-9)
=-45-(-14)+ (-24)-(-63)
8
n+15 chia het cho n-2
n-2+17 chia het cho n-2
suy ra 17 chia hết cho n-2
n-2 | -17 | -1 | 1 | 17 |
n | -15 | 1 | 3 | 19 |
mấy cau sau tuong tu
a)
(2n+1) chia hết cho (n+3)
=> (2n+6) - 5 chia hết cho (n+3)
Mà 2n+6 chia hết cho (n+3)
nên 5 chia hết cho (n+3)
=> (n+3)={0;5;10;15,...}
=> n={-3;2;7;12;...}
Mà n thuộc N
=> n={2;7;12;....}
Mấy câu sau bạn làm tương tự nha.
CHÚC BẠN HOK TỐT !!!!!!!!!!
a) \(\left(2n+1\right)⋮\left(n-3\right)\)
\(\Leftrightarrow\left(2n-6\right)+7⋮\left(n-3\right)\)
\(\Leftrightarrow2\left(n-3\right)+7⋮\left(n-3\right)\)mà \(2\left(n-3\right)⋮\left(n-3\right)\)
\(\Leftrightarrow7⋮\left(n-3\right)\)
\(\Leftrightarrow\left(n-3\right)\inƯ\left(7\right)\)Mặt khác \(n\in N\) nên\(n-3\in N\)
\(\Leftrightarrow n-3=7\)
\(\Leftrightarrow n=10\)
b) \(\left(n+8\right)⋮\left(n-11\right)\)
\(\Leftrightarrow\left(n-11\right)+19⋮\left(n-11\right)\)mà \(\left(n-11\right)⋮\left(n-11\right)\)
\(\Leftrightarrow19⋮\left(n-11\right)\)
\(\Leftrightarrow\left(n-11\right)\inƯ\left(19\right)\)Mặt khác \(n\in N\)nên \(n-11\in N\)
\(\Leftrightarrow n-11=19\)
\(\Leftrightarrow n=30\)
Mình làm vd 2 bài nha:
a) n+6 chia hết cho n+2
n+2 chia hết cho n+2
nên (n+6)-(n+2) chia hết cho n+2
4 chia hết cho n-2
=> n-2 = 1;-1;2;-2;4;-4
=> n=3;1;4;0;6
d) n^2 +4 chia hết cho 4
n+1 chia hết cho n+1 nên (n+1)(n+1) chia hết cho n+1 hay n2+2n+1 chia hết cho n+1
=> (n^2+2n+1)-(n^2+4) chia hết cho n-1
=> 2n+1-4 chia hết cho n-1
=> 2n - 3 chia hết cho n-1
n-1 chia hết cho n-1 nên 2n-2 chia hết cho n-1
=> (2n-2)-(2n-3) chia hết cho n-1
=> 1 chia hết cho n-1
=> n-1 = 1;-1
=> n=0
Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
n + 4 chia hết cho n - 1
=> ( n - 1 ) + 5 chia hết cho n - 1
Mà n - 1 chia hết cho n - 1
=> 5 chia hết cho n - 1
=> n -1 thuộc Ư(5) = { 1 ; 5 }
=> n thuộc { 2 ; 6 }
a) n+5 chia hết cho n-1
=>n-1+6 chia hết cho n-1
=>6 chia hết cho n-1
=> n-1 thuộc Ư(6)={1;2;3;6;-1;-2;-3;-6}
Bảng bn tự kẻ nha còn các câu khác làm tương tự
a)2n+1 chia hết cho n-2
=>2n-4+5 chia hết cho n-2
=>5 chia hết cho n-2(vì 2n-4 chia hết cho n-2)
=>n-2\(\in\)Ư(5)={-5;-1;1;5}
=>n\(\in\){-3;1;3;8}
b)2n-5 chia hết cho n+1
=>2n+2-7 chia hết cho n+1
=>7 chia hết cho n+1(vì 2n+2 chia hết cho n+1)
=>n+1\(\in\)Ư(7)={-7;-1;1;7}
=>n\(\in\){-8;-2;0;6}
a, Để \(n\in Z\)
Ta có : \(3n+2⋮2n-1\)
\(6n-3n+2⋮2n-1\)
\(3\left(2n-1\right)+2⋮2n-1\)
Vì 2 \(⋮\)2n-1 hay 2n-1\(\in\)Ư'(2)={1;-1;-2;2}
Ta có bảng
2n-1 | -1 | 1 | 2 | -2 |
2n | 0 | 2 | 3 | -1 |
n | 0 | 1 | 3/2 | -1/2 |
Vậy n = {0;1}
\(b,\frac{n+3}{n-7}=\frac{n-7+10}{n-7}=1+\frac{10}{n-7}\)
=> 10 chia hết cho n - 7
=> n - 7 thuộc Ư\((10)\)
=> n - 7 \(\in\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Lập bảng :
n - 7 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
n | 8 | 6 | 9 | 5 | 12 | 2 | 17 | -3 |
23a.Ta có : n+2 / n-3 = n-3+5 / n-3 = n-3 / n-3 + 5 / n-3 .Vì n-3 chia hết cho n-3 nên để n+2 chia hết cho n-3 thì 5 chia hết cho n-3 => n-3 = -5;-1;1;5 => n = -2;2;4;8.
23b.Ta có : 2n-7 / n-1 = 2n-2-5 / n-1 = 2n-2 / n-1 - 5/ n-1 .Vì 2n-2 = 2(n-1) chia hết cho n-1 nên để 2n-7 chia hết cho n-1 thì 5 chia hết cho n-1 => n-1 = -5;-1;1;5 => n = -4;0;2;6.
24a.
x+3 | -13 | -1 | 1 | 13 |
2y-1 | -1 | -13 | 13 | 1 |
2y | 0 | -12 | 14 | 2 |
x | -16 | -4 | -2 | 10 |
y | 0 | -6 | 7 | 1 |
Vậy (x;y) = (-16;0);(-4;-6);(-2;7);(10;1) thỏa mãn (x+3)(2y-1) = 13
24b.
x-2 | -11 | -1 | 1 | 11 |
xy+1 | -1 | -11 | 11 | 1 |
xy | -2 | -12 | 10 | 0 |
x | -9 | 1 | 3 | 13 |
y | -12 | 0 |
Vậy (x;y) = (1;-12);(13;0) thỏa mãn (x-2)(xy+1) = 11
23a.Ta có : n+2 / n-3 = n-3+5 / n-3 = n-3 / n-3 + 5 / n-3 .Vì n-3 chia hết cho n-3 nên để n+2 chia hết cho n-3 thì 5 chia hết cho n-3 => n-3 = -5;-1;1;5 => n = -2;2;4;8.
23b.Ta có : 2n-7 / n-1 = 2n-2-5 / n-1 = 2n-2 / n-1 - 5/ n-1 .Vì 2n-2 = 2(n-1) chia hết cho n-1 nên để 2n-7 chia hết cho n-1 thì 5 chia hết cho n-1 => n-1 = -5;-1;1;5 => n = -4;0;2;6.
24a.
x+3 | -13 | -1 | 1 | 13 |
2y-1 | -1 | -13 | 13 | 1 |
2y | 0 | -12 | 14 | 2 |
x | -16 | -4 | -2 | 10 |
y | 0 | -6 | 7 | 1 |
Vậy (x;y) = (-16;0);(-4;-6);(-2;7);(10;1) thỏa mãn (x+3)(2y-1) = 13
24b.
x-2 | -11 | -1 | 1 | 11 |
xy+1 | -1 | -11 | 11 | 1 |
xy | -2 | -12 | 10 | 0 |
x | -9 | 1 | 3 | 13 |
y | -12 | 0 |
Vậy (x;y) = (1;-12);(13;0) thỏa mãn (x-2)(xy+1) = 11
\(2n+15⋮2n+3\)
⇒\(2n+3+12⋮2n+3\)
⇒\(12⋮2n+3\)
⇒\(2n+3\inƯ\left(12\right)\)
\(Ư\left(12\right)=\left\{-12,-6,-4,-3,-2,-1,^{ }1,^{ }2,^{ }3,^{ }4,^{ }6,^{ }12\right\}\)
Sau khi làm đến đây thì bạn lập bảng và kết luận nhé! Chúc học tốt!
Ông tú sai mẹ rồi