K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(=\dfrac{1}{100}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(=\dfrac{1}{100}-\dfrac{99}{100}=-\dfrac{49}{50}\)

10 tháng 1 2016

50 nếu ai thích sakura thì **** mình nếu ai thích sakura mà Ko **** mình thì chứng tỏ bạn Ko thích sakura

26 tháng 8 2019

a, \(A=\frac{1}{2}+\left[\frac{1}{2}\right]^2+\left[\frac{1}{2}\right]^3+...+\left[\frac{1}{2}\right]^{99}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{97}}+\frac{1}{2^{98}}\)

\(2A-A=\left[1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{97}}+\frac{1}{2^{98}}\right]-\left[\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\right]\)

\(A=1-\frac{1}{2^{99}}\)

Do đó A < 1

b, \(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)

\(3B=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\)

\(3B-B=\left[1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\right]-\left[1+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right]\)

\(2B=1-\frac{1}{3^{99}}\)

\(B=\frac{1-\frac{1}{3^{99}}}{2}< \frac{1}{2}\)

7 tháng 7 2016

\(C=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(C=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)

\(C=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)

\(C=\frac{1}{100}-\left(1-\frac{1}{100}\right)\)

\(C=\frac{1}{100}-\frac{99}{100}\)

\(C=\frac{-98}{100}=\frac{-49}{50}\)

Ủng hộ mk nha ^_-