Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, bạn sửa lại đề nhé
b, \(C=\frac{2n+1}{4n+6}=\frac{4n+4}{4n+6}=\frac{4n+6-2}{4n+6}=1-\frac{2}{4n+6}=1-\frac{1}{2n+3}\)
\(\Rightarrow2n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)
2n + 3 | 1 | -1 |
2n | -2 | -4 |
n | -1 | -2 |
\(D=\frac{2n+1}{n-3}=\frac{2\left(n+\frac{1}{2}\right)}{n-3}=\frac{2\left(n-3+\frac{7}{2}\right)}{n-3}\)
\(=\frac{2\left(n-3\right)+7}{n-3}=2+\frac{7}{n-3}\Rightarrow n-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
n - 3 | 1 | -1 | 7 | -7 |
n | 4 | 2 | 10 | -4 |
a, \(\frac{3n+5}{n+1}=\frac{3\left(n+1\right)+2}{n+1}=\frac{2}{n+1}\)
\(\Rightarrow n+1\in2=\left\{\pm1;\pm2\right\}\)
n + 1 | 1 | -1 | 2 | -2 |
n | 0 | -2 | 1 | -3 |
b, \(\frac{n+13}{n+1}=\frac{n+1+12}{n+1}=\frac{12}{n+1}\)
\(\Rightarrow n+1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
n + 1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
n | 0 | -2 | 1 | -3 | 2 | -4 | 3 | -5 | 5 | -7 | 11 | -13 |
c, \(\frac{3n+15}{n+1}=\frac{3\left(n+1\right)+12}{n+1}=\frac{12}{n+1}\)
\(\Rightarrow n+1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
n + 1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
n | 0 | -2 | 1 | -3 | 2 | -4 | 3 | -5 | 5 | -7 | 11 | -13 |
Để \(A=\frac{12}{3n-1}\) là số nguyên thì 12 ⋮ 3n - 1 ⇒ 3n -1 ∈ Ư ( 12 ) = { + 1 ; + 2 ; + 3 ; + 6 ; + 12 }
3n - 1 | - 1 | 1 | - 2 | 2 | - 3 | 3 | - 6 | 6 | - 12 | 12 |
3n | 0 | 2 | - 1 | 3 | - 2 | 4 | - 5 | 7 | - 11 | 13 |
n | 0 | 2/3 | - 1/3 | 1 | - 2/3 | 4/3 | - 5/3 | 7/3 | - 11/3 | 13/3 |
Thỏa mãn đề bài n ∈ { 0; 1 }
Các ý khác làm tương tự
Để D là phân số nguyên thì 6n-3/3n+1 phải là 1 số nguyên
Ta có 6n-3/3n+1=6n+2-5/3n+1=2(3n+1)/3n+1 - 5/3n+1=2+ 5/3n+1
Để D có GT nguyên thì 5/3n+1 có GT nguyên hay 5 chia hết cho 3n+1
=> 3n+1 thuộc Ước của 5
=> 3n+1 thuộc {-5;-1;1;5}
=> n thuộc {-2;-2/3;0;4/3}
Mk làm mẫu cho 1 phần rùi các câu còn lại làm tương tự nhé
a) \(\frac{3n-2}{n-3}=3+\frac{7}{n-3}\)
Để \(\frac{3n-2}{n-3}\)nguyên thì \(\frac{7}{n-3}\)nguyên
hay \(n-3\)\(\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta lập bảng sau:
\(n-3\) \(-7\) \(-1\) \(1\) \(7\)
\(n\) \(-4\) \(2\) \(4\) \(10\)
Vậy....