Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm min:
$F=3x^2+x-2=3(x^2+\frac{x}{3})-2$
$=3[x^2+\frac{x}{3}+(\frac{1}{6})^2]-\frac{25}{12}$
$=3(x+\frac{1}{6})^2-\frac{25}{12}\geq \frac{-25}{12}$
Vậy $F_{\min}=\frac{-25}{12}$. Giá trị này đạt tại $x+\frac{1}{6}=0$
$\Leftrightarrow x=\frac{-1}{6}$
Tìm min
$G=4x^2+2x-1=(2x)^2+2.2x.\frac{1}{2}+(\frac{1}{2})^2-\frac{5}{4}$
$=(2x+\frac{1}{2})^2-\frac{5}{4}\geq 0-\frac{5}{4}=\frac{-5}{4}$ (do $(2x+\frac{1}{2})^2\geq 0$ với mọi $x$)
Vậy $G_{\min}=\frac{-5}{4}$. Giá trị này đạt tại $2x+\frac{1}{2}=0$
$\Leftrightarrow x=\frac{-1}{4}$
Tìm max của C=xy biết 3x+5y=12
Tìm GTNN của: C= x^4 -2x^3+3x^2-4x+2021
Tìm GTNN của D(x)=x^4 -x^2+2x+7
BÀI 1:
a) \(A=x^2+2x+3=\left(x+1\right)^2+2\ge2\)
Vậy MIN \(A=2\)khi \(x=-1\)
b) \(B=x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy MIN \(B=\frac{3}{4}\)khi \(x=-\frac{1}{2}\)
c) \(C=2x^2+3x-1=2\left(x+\frac{3}{4}\right)^2-\frac{17}{8}\ge-\frac{17}{8}\)
Vậy MIN \(C=-\frac{17}{8}\)khi \(x=-\frac{3}{4}\)
d) \(D=4x^2-x=\left(2x-\frac{1}{4}\right)^2-\frac{1}{16}\ge-\frac{1}{16}\)
Vậy MIN \(D=-\frac{1}{16}\)khi \(x=\frac{1}{8}\)
\(D=-2x^2+3x-1\)
\(\Rightarrow D=-2\left(x^2-\dfrac{3}{2}x\right)-1\)
\(\Rightarrow D=-2\left(x^2-\dfrac{3}{2}x+\dfrac{9}{4}-\dfrac{9}{4}\right)-1\)
\(\Rightarrow D=-2\left(x^2-\dfrac{3}{2}x+\dfrac{9}{4}\right)-1+\dfrac{9}{2}\)
\(\Rightarrow D=-2\left(x-\dfrac{3}{2}\right)^2-\dfrac{7}{2}\le-\dfrac{7}{2}\left(-2\left(x-\dfrac{3}{2}\right)^2\le0,\forall x\right)\)
\(\Rightarrow Max\left(D\right)=-\dfrac{7}{2}\left(tạix=\dfrac{3}{2}\right)\)
MAXD = -7/2 khi x = 3/2