K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2017

xét tam giác ame và tam giác bmc

me=mc (gt)

góc ema= góc bmc (đối đỉnh)

am=bm( m là trung điểm của ab)

=> tam giác ame= tam giác bmc(c.g.c)

=> góc eam= góc cbm ( 2 cạnh tương ứng)

mà góc eam và góc cbm SLT

=>ae //bc

xét tam giác afn và tam giác cbn

fn=bn (gt)

góc an f= góc bnc (đ đ)

an=cn ( n là trung điểm của ac)

=> tam giác a fn= tam giác cbn (c.g.c)

=> a f=cb (2 cạnh t ung)

mà ae=cb (tam giác ame= tam giác bmc)

=>a f= ae (=cb)

=> a là trung điểm của e f

loading...

a: Xét ΔAME và ΔBMC có

MA=MB

\(\widehat{AME}=\widehat{BMC}\)(hai góc đối đỉnh)

ME=MC

Do đó: ΔAME=ΔBMC

b: Xét ΔAFN và ΔCBN có

NA=NC

\(\widehat{ANF}=\widehat{CNB}\)(hai góc đối đỉnh)

NF=NB

Do đó: ΔAFN=ΔCBN

c: ΔAME=ΔBMC

=>\(\widehat{MAE}=\widehat{MBC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AE//BC

d: ΔAME=ΔBMC

=>AE=BC

ΔANF=ΔCNB

=>\(\widehat{NAF}=\widehat{NCB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AF//BC

ΔANF=ΔCNB

=>AF=CB

Ta có: AF=CB

AE=BC

Do đó: AE=AF

Ta có: AE//BC

AF//BC

AE,AF có điểm chung là A

Do đó: E,A,F thẳng hàng

mà AE=AF

nên A là trung điểm của EF

a: Xét tứ giác AEBC có 

M là trung điểm của AB

M là trung điểm của EC

Do đó: AEBC là hình bình hành

Suy ra: AE=BC

b: Xét tứ giác ABCF có 

N là trung điểm của AC

N là trung điểm của BF

Do đó: ABCF là hình bình hành

Suy ra: AF=BC

mà AE=BC

nên AE=FA

a: Xét tứ giác AEBC có 

M là trung điểm của AB

M là trung điểm của EC

Do đó: AEBC là hình bình hành

Suy ra: AE=BC

b: Xét tứ giác ABCF có 

N là trung điểm của AC

N là trung điểm của BF

Do đó: ABCF là hình bình hành

Suy ra: AF=BC

mà AE=BC

nên AE=FA

8 tháng 7 2015

a) Xét tam giác AME và tam giác BMC, có:

            góc AME = góc BMC ( đối đỉnh)

           EM = MC ( giải thiết )

           AM= MB ( M là trung điểm của AB )

\(\Rightarrow\) TAm giác AME = tam giác BMC ( c-g-c)

\(\Rightarrow\)góc AEM = góc BCM ( hai góc tương ứng) 

\(\Rightarrow AE\)//\(BC\) ( đpcm)

 

25 tháng 7 2016

Toán lớp 7Trang 2 nek, z là hết mờ hen^^

25 tháng 7 2016

Toán lớp 7Trang 1 nek

a: Xét ΔANE và ΔCNB có

NA=NC

\(\widehat{ANE}=\widehat{CNB}\)

NE=NB

Do đó: ΔANE=ΔCNB

Suy ra: \(\widehat{AEN}=\widehat{CBN}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AE//BC

b: Xét ΔAMD và ΔBMC có

MA=MB

\(\widehat{AMD}=\widehat{BMC}\)

MD=MC

Do đó: ΔAMD=ΔBMC

7 tháng 10 2021

Giúp e cde với ạ

8 tháng 7 2015

Xét tam giác ABC, có: N là trung điểm AC

                                                              }

                                 M là trung điểm AB

=> MN là đườg trung bình tam giác ABC

=> MN//BC                 (1)

Chứng minh tương tự ta có : MN là đường trung bình tam giác AEC

=>         MN //AE                (2)

    {

            MN=1/2AE               (3)

Từ (1) và (2) => AE//BC (đpcm)

b) Xét tam giác ABF, có : M là trung điểm AB

                                                                                   }

                                      N là trung điểm BF (NF=NB)

=> MN là đường trung bình tam giác ABF

=> MN =1/2 AF                   (4)

Từ (3) và (4) => AE = AF

Mà A nằm giữa E và F

=> A là trung điểm của EF. 

Vậy .....................

19 tháng 11 2016

1.

Xét tam giác AMB và tam giác NMC có:

AM = NM (gt)

AMB = NMC (2 góc đối đỉnh)

MB = MC (M là trung điểm của BC)

=> Tam giác AMB = Tam giác NMC (c.g.c)

Xét tam giác AMC và tam giác NMB có:

AM = NM (gt)

AMC = NMB (2 góc đối đỉnh)

MC = MB (M là trung điểm của BC)

=> Tam giác AMC = Tam giác NMB (c.g.c)

2.

Xét tam giác AME và tam giác BMC có:

AM = BM (M là trung điểm của AB)

AME = BMC (2 góc đối đỉnh)

ME = MC (gt)

=> Tam giác AME = Tam giác BMC (c.g.c)

=> AEM = BCM (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong

=> AE // BC

Xét tam giác ANF và tam giác CNB có:

AN = CN (N là trung điểm của AC)

ANF = CNB (2 góc đối đỉnh)

NF = NB (gt)

=> Tam giác ANF = Tam giác CNB (c.g.c)

=> AF = CB (2 cạnh tương ứng)