Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(T=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+3^7\left(1+3+3^2\right)\)
\(=13\left(3+3^4+3^7\right)⋮13\)
a/ \(5^5-5^4+5^3=5^3\left(5^2-5+1\right)=5^3.21⋮7\left(đpcm\right)\)
b/ \(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4.55⋮11\left(đpcm\right)\)
c/ \(10^9+10^8+10^7=10^7.\left(10^2+10+1\right)=10^7.111=1110000⋮222\left(đpcm\right)\)
d/ \(10^6-5^7=2^6.5^6-5^7=5^6\left(2^6-5\right)=5^6.59\left(đpcm\right)\)
e/ \(3^{n+2}-2^{n+2}+3^n-2^n=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)=3^n.10-2^n.5=3^n.10-2^{n-1}.10=10\left(3^n-2^{n-1}\right)⋮10\left(đpcm\right)\)
f/ \(81^7-27^9-9^{13}=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}.5=3^{24}.45⋮45\left(đpcm\right)\)
a) Ta có: 55 - 54 + 53
= 53(52 - 5 + 1)
= 53 . 3 . 7 \(⋮\) 7 (đpcm)
\(6+6^2+\cdot\cdot\cdot+6^{10}\)
\(=6\cdot\left(1+6\right)+6^3\cdot\left(1+6\right)+\cdot\cdot\cdot+6^9\cdot\left(1+6\right)\)
\(=6\cdot7+6^3\cdot7+\cdot\cdot\cdot+6^9\cdot7\)
\(=7\cdot\left(6+6^3+\cdot\cdot\cdot+6^9\right)⋮7\)
\(\Rightarrow6+6^2+\cdot\cdot\cdot\cdot+6^{10}⋮7\)
Bài giải
Ta có: S = 3 + 32 + 33 +...+ 37 + 38 + 39
=> S = (3 + 32 + 33) +...+ (37 + 38 + 39)
=> S = 1.(3 + 32 + 33) +...+ (36.3 + 36.32 + 36.33)
=> S = 1.(3 + 32 + 33) +...+ 36.(3 + 32 + 33)
=> S = (3 + 32 + 33).(1 + 33 + 36)
=> S = 39.(1 + 33 + 36) \(⋮\)-39
Vậy S \(⋮\)-39
Đề lỗi công thức. Bạn coi lại.
hỏi chấm