Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Theo đề ta có:
\(\text{sđc(AD)}=\frac{1}{3}\text{sđc(AB)}=\frac{1}{9}[\text{sđc(AB)+sđc(BC)+sđc(CD)}]\)
\(=\frac{1}{9}(360^0-\text{sđc(AD)})\)
\(\Rightarrow \text{sđc(AD)}=36^0\)
\(\widehat{BEC}=\frac{\text{sđc(BC)-sđc(AD)}}{2}=\frac{3\text{sđc(AD)}-\text{sđc(AD)}}{2}=\text{sđc(AD)}=36^0\)
Có \(sđ\stackrel\frown{BD}=\widehat{BOD}=40^0\)
Có \(\widehat{BED}=\dfrac{1}{2}\left(sđ\stackrel\frown{BD}+sđ\stackrel\frown{AC}\right)\)
\(\Leftrightarrow\)\(60^0=\dfrac{1}{2}\left(40^0+sđ\stackrel\frown{AC}\right)\) \(\Leftrightarrow sđ\stackrel\frown{AC}=80^0\)
Ý B
B
`sdBC=1/2(sdBD+sdAC)`
`=>sdAC=2sdBC-sdBD`
`<=>sdAC=120^o-40^o=80^o`
a, Theo tc 2 tt cắt nhau: \(AE=EC;BF=CF\)
Vậy \(AE+BF=EC+CF=EF\)
b, Vì \(\left\{{}\begin{matrix}AE=EC\\\widehat{EAO}=\widehat{ECO}=90^0\\OE.chung\end{matrix}\right.\) nên \(\Delta AOE=\Delta COE\)
\(\Rightarrow\widehat{AOE}=\widehat{EOC}\) hay OE là p/g \(\widehat{AOC}\)
Cmtt: \(\Delta BOF=\Delta COF\Rightarrow\widehat{BOF}=\widehat{COF}\) hay OF là p/g \(\widehat{BOC}\)
Vậy \(\widehat{EOF}=\widehat{COF}+\widehat{COE}=\dfrac{1}{2}\left(\widehat{AOC}+\widehat{BOC}\right)=90^0\) hay OE⊥OF
a: =>x>=0 và x^2+x=x^2
=>x=0
a: =>x>=1 và 1-x^2=x^2-2x+1
=>-2x^2+2x=0 và x>=1
=>x=1
a: =>x>=1 và 1-2x^2=x^2-2x+1
=>-3x^2+2x=0 và x>=1
=>\(x\in\varnothing\)
a: ĐKXĐ: x<=2 và x^2-2x=x^2-4x+4
=>x=2
a: =>căn x^2-4=x-2
=>x>=2 và x^2-4=x^2-4x+4
=>x>=2 và 4x=8
=>x=2
b: =>x>=0 và x^2-4x+1=x^2
=>-4x+1=0 và x>=0
=>x=1/4
b: =>x>=-1 và x^2+x+1=x^2+2x+1
=>x=0
c: =>x>=1 và 4x^2-8x+1=x^2-2x+1
=>x>=1 và 3x^2-6x=0
=>x=2
b: =>x>=-1 và 5x^2-2x+2=x^2+2x+1
=>x>=-1 và 4x^2-4x+1=0
=>x=1/2
b: =>căn 4x^2-x+1=2x+3
=>x>=-3/2 và 4x^2-x+1=(2x+3)^2=4x^2+12x+9
=>x>=-3/2 và -13x=8
=>x=-8/13
\(\sqrt{x^2-4}-x+2=0\\ \Leftrightarrow\sqrt{x^2-4}=x-2\\ \Leftrightarrow\left(\sqrt{x^2-4}\right)^2=\left(x-2\right)^2\)
\(\Leftrightarrow x^2-4-\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)-\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2-x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)4=0\)
\(\Leftrightarrow x=2\)
Vậy \(S=\left\{2\right\}\)
2:
a: AC=căn 5^2-3^2=4cm
sin B=AC/BC=4/5
cos B=AB/BC=3/5
tan B=4/5:3/5=4/3
cot B=1:4/3=3/4
b: AB=căn 13^2-12^2=5cm
sin B=AC/BC=12/13
cos B=AB/BC=5/13
tan B=12/13:5/13=12/5
cot C=1:12/5=5/12
c: BC=căn 4^2+3^2=5cm
sin B=AC/BC=4/5
cos B=AB/BC=3/5
tan B=4/5:3/5=4/3
cot B=1:4/3=3/4
Gọi A là tọa độ giao điểm d1 với trục tung \(\Rightarrow x_A=0\)
\(y_A=x_A+3=0+3=3\)
\(\Rightarrow A\left(0;3\right)\)
Để 2 đường thẳng cắt nhau trên trục tung \(\Rightarrow d_2\) đi qua A
\(\Rightarrow-2.0+m^2-1=3\Rightarrow m=\pm2\)
Thay x = 0 vào ptđt d1 ta được : y = 3
d1 cắt d2 <=> 3 = m^2 - 1 <=> m^2 = 4 <=> m = 2 ; m = - 2
Vậy Với m = 2 ; m = -2 thì d1 cắt d2
\(A=\dfrac{\cos^217^o+2\cos^273^o}{\cot65^o\cot25^o}-\sin^217^o\)
\(A=\dfrac{\left(\cos^217^o+\cos^273^o\right)+\cos^273^o}{\tan25^o\cot25^o}-\sin^217^o\)
(áp dụng công thức \(\cot\alpha=\tan\left(90^o-\alpha\right)\))
\(A=\left(\cos^217^o+\sin^217^o\right)+\sin^217^o-\sin^217^o\)
(áp dụng công thức \(\tan\alpha.\cot\alpha=1\) và \(\cos\alpha=\sin\left(90^o-\alpha\right)\))
\(A=1\)