Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Tổng của N là:
\(\dfrac{49\cdot48}{2}=49\cdot24=1176\)
Ta có : S = 1.2 + 2.3 + 3.4 + ..... + 99.100
=> 3S = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + .... + 99.100.101
=> 3S = 99.100.101
=> S = \(\frac{99.100.101}{3}=333300\)
ta xét
\(S\left(n\right)=1.2+2.3+..+n\left(n-1\right)\)
\(\Rightarrow3S\left(n\right)=1.2.3+2.3.3+..+3.n.\left(n-1\right)\)
\(\Leftrightarrow3S\left(n\right)=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+..+n\left(n-1\right)\left(n+1-\left(n-2\right)\right)\)
\(\Leftrightarrow3S\left(n\right)=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+..+n\left(n-1\right)\left(n+1\right)-n\left(n-1\right)\left(n-2\right)\)
\(\Leftrightarrow3S\left(n\right)=n\left(n-1\right)\left(n+1\right)\Rightarrow S\left(n\right)=\frac{n\left(n-1\right)\left(n+1\right)}{3}\)
Áp dụng ta có \(S\left(100\right)=\frac{99.100.101}{3}=333300\)
A = 1.2 + 2.3 +...+ n.(n+1)
1.2.3 = 1.2.3
2.3.3 = 2.3.( 4-1) = 2.3.4 - 1.2.3
3.4.3 = 3.4(5-2) = 3.4.5 - 2.3.4
.................................................
n(n+1).3 =n(n+1)[ (n+2) - (n-1)] = n(n+1)(n+2) - (n-1)n(n+1)
Cộng vế với vế ta có:
1.2.3+2.3.3+...+n(n+1).3 = n(n+1)(n+2)
3.[1.2+ 2.3+...+ n(n+1)] = n(n+1)(n+2)
1.2 + 2.3 +...+n(n+1) = n(n+1)(n+2): 3
A = 1.2 + 2.3 +...+ n.(n+1)
1.2.3 = 1.2.3
2.3.3 = 2.3.( 4-1) = 2.3.4 - 1.2.3
3.4.3 = 3.4(5-2) = 3.4.5 - 2.3.4
.................................................
n(n+1).3 =n(n+1)[ (n+2) - (n-1)] = n(n+1)(n+2) - (n-1)n(n+1)
Cộng vế với vế ta có:
1.2.3+2.3.3+...+n(n+1).3 = n(n+1)(n+2)
3.[1.2+ 2.3+...+ n(n+1)] = n(n+1)(n+2)
1.2 + 2.3 +...+n(n+1) = n(n+1)(n+2): 3
HT!
D = 1.2 + 2.3+ 3.4 +...+ 99.100
=>3D=1.2.3+2.3.3+3.4.3+...+99.100.3
=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+....+99.100.(101-98)
=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
=99.100.101-0.1.2
=99.100.101
=999900
=>D=999900:3=333300
Dn = 1.2 + 2.3 + 3.4 +...+ n (n +1)
=>3Dn=1.2.3+2.3.3+3.4.3+...+n(n+1).3
=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+n.(n+1).[(n+2)-(n-1)]
=1.2.3-0.1.2+2.3.4-1.2.3+2.3.4-2.3.4+....+n(n+1)(n+2)-(n-1)n(n+1)
=n.(n+1).(n+2)-0.1.2
=n.(n+1)(n+2)
=>Dn=n.(n+1)(n+2):3
=>điều cần chứng minh
\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{n\left(n+1\right)}\)
= \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n}-\dfrac{1}{n+1}\)
= 1 - \(\dfrac{1}{n+1}\) = \(\dfrac{n}{n+1}\)
a) 3.A = 1.2.3 + 2.3.(4 - 1) + 3.4.(5- 2) +...+n.(n+1).(n+2 - (n-1)) + ...+ 97.98.(99- 96) + 98.99.(100 - 97)
=> 3.A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 +...+ 97.98.99 - 96.97.98 + 98.99.100 - 97.98.99
= 98.99.100
=> A = 98.99.100 : 3 = 323400
b) B gồm 99 số 1; 98 số 2;..; 2 số 98; 1 số 99
Có thể Viết lại B = 1 + (1+2) + (1+2+3) +...+ (1+2+3+...+98 + 99)
= \(\frac{1.2}{2}+\frac{2.3}{2}+\frac{3.4}{2}+...+\frac{98.99}{2}=\frac{1.2+2.3+3.4+...98.99}{2}=\frac{A}{2}=\frac{323400}{2}=161700\)
A = 1.2 + 2.3 + 3.4 +......+ 98.99
=> 3A = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ........ + 98.99.(100 - 97)
=> 3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ........ + 98.99.100 - 97.98.99
=> 3A = (1.2.3 + 2.3.4 + 3.4.5 + ....... + 98.99.100) - (1.2.3 + 2.3.4 + ..... + 97.98.99)
=> 3A = 98.99.100
=> A = \(\frac{98.99.100}{3}=323400\)
A =1.2 + 2.3 + ....+ n.(n+1)
A = n(n+1) + ....+ 2.3 + 1.2
A\(\times\) 3 = n(n+1).3 +....+ 2.3.3+ 1.2.3
A\(\times\)3 = n(n+1)[n+2 - (n -1)]+....+2.3.(4-1) +1.2.3
A\(\times\)3 = n(n+1)(n+2) - (n-1)n(n+1) +....+ 2.3.4 - 1.2.3 + 1.2.3
A\(\times\)3 = n(n+1)(n+2)
A \(\times\)3 = n(n+1)(n+2)
A = n(n+1)(n+2) : 3
A =1.2 + 2.3 + ....+ n.(n+1)
A = n(n+1) + ....+ 2.3 + 1.2
A×× 3 = n(n+1).3 +....+ 2.3.3+ 1.2.3
A××3 = n(n+1)[n+2 - (n -1)]+....+2.3.(4-1) +1.2.3
A××3 = n(n+1)(n+2) - (n-1)n(n+1) +....+ 2.3.4 - 1.2.3 + 1.2.3
A××3 = n(n+1)(n+2)
A ××3 = n(n+1)(n+2)
A = n(n+1)(n+2) : 3
Ht!