K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2023

N =3+33+33+...+399

    =(3+33+33)+...+(397+398+399)

   =3.(1+3+32)+...+397.(1+3+32)

   =(3+...397).(1+3+32)

   =3.(1+...+396).13 

   =39.(1+...+396)

Có 39 chia hết cho 39

=> 39.(1+...+396) chia hết cho 39

=> N chia hết cho 39 hay N : 9 dư 0

Vậy:...

 

 

 

7 tháng 12 2018

\(M=1+3+\left(3^2+3^3+3^4\right)+\left(3^5+3^6+3^7\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)

\(M=4+13\cdot\left(3^2+3^5+...+3^{98}\right)\)chia 13 dư 4

\(M=1+\left(3+3^2+3^3+3^4\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)

\(M=1+40\cdot\left(3+...+3^{97}\right)\)chia 40 dư 1

10 tháng 12 2014

bạn tách dãy thành hiệu của tổng các lũy thừa có số mũ chẵn và tổng của các số mũ lẻ là xong ;)

6 tháng 10 2014

ai giúp mình với

23 tháng 9 2015

câu c là n \(\in\) N nhe

23 tháng 9 2015

c) A = 30 + 31 + 32 + ...+ 399

3A = 3 + 32 + 33 + ... + 3100

3A - A = (3 + 32 + 33 + ...+ 3100) - (3 + 31 + 32 + ... + 399)

      2A = 3100  - 30 = 3100 - 1

        A = (3100 - 1) : 2

Vậy n = 99

11 tháng 3 2020

cho \(M=1+3+3^2+...+3^{99}+3^{100}\)

=>\(M=1+\left(3+3^2+3^3\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)

\(=>M=1+3\left(1+3+3^2\right)+...+3^{98}\left(1+3+3^2\right)\)

\(=>M=1+13\left(3+...+3^{98}\right)\)

Mà \(13\left(3+3^{98}\right)⋮13\)

=> M chia cho 13 dư 1

11 tháng 3 2020

+) \(M=1+3+3^2+...+3^{99}+3^{100}\)

\(\Leftrightarrow M=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)

\(\Leftrightarrow M=\left(1+3+9\right)+3^3\left(1+3+9\right)+....+3^{98}\left(1+3+9\right)\)

\(\Leftrightarrow M=13+3^3\cdot14+....+3^{98}\cdot14\)

\(\Leftrightarrow M=13\left(1+3^3+....+3^{98}\right)\)

=> M chia 13 dư 0

11 tháng 11 2021

Ta có : A = 3+32+33+...+32021

A = ( 3+32+33 )+ (34 + 35 + 36 )+ .... +( 32019 + 32020 + 32021)

A =  3. (1 + 3 + 32) + 34 . (1 + 3 + 32) + .... + 32019. (1 + 3 + 32)

A = 3 . 13 + 34 . 13 + ... + 32019 . 13

A = 13 . (3 + 34 + .... + 32019) chia hết cho 13.

Vậy tổng của A chia cho 13 có số dư là 0

AH
Akai Haruma
Giáo viên
6 tháng 7 2024

Lời giải:

$A=3-3^2+3^3-3^4+....-3^{2010}+3^{2011}$

$3A=3^2-3^3+3^4-3^5+...-3^{2011}+3^{2012}$

$\Rightarrow A+3A=3^{2012}+3$

$\Rightarrow 4A=3^{2012}+3$

$\Rightarrow A=\frac{3^{2012}+3}{4}$

b.

Từ phần a suy ra $4A-3=3^{2012}$

Do đó để $4A-3=81^x$ thì $3^{2012}=81^x$

$\Rightarrow 81^{503}=81^x$

$\Rightarrow x=503$

c.

$A=3+(-3^2+3^3-3^4)+(3^5-3^6+3^7)+(-3^8+3^9-3^{10})+...+(3^{2009}-3^{2010}+3^{2011})$

$=3+3^2(-1+3-3^2)+3^5(1-3+3^2)+3^8(-1+3-3^2)+...+3^{2009}(1-3+3^2)$

$=3+3^2(-7)+3^5.7+3^8(-7)+...+3^{2009}(-7)$

$=3+7(-3^2+3^5-3^8+....+3^{2009})$

$\Rightarrow A$ chia 7 dư 3.

d.

$4A=3^{2012}+3$

Có: $3^2\equiv -1\pmod {10}$

$\Rightarrow 3^{2012}=(3^2)^{1006}\equiv 1\pmod {10}$

$\Rightarrow 3^{2012}+3\equiv 4\pmod {10}$

$\Rightarrow 4A$ có tận cùng là 4

$\Rightarrow A$ có tận cùng là 1.