Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(x-1\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
x-1 | 1 | -1 | 3 | -3 |
x | 2 | 0 | 4 | -2 |
b, \(2x-1\inƯ\left(-4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
2x-1 | 1 | -1 | 2 | -2 | 4 | -4 |
x | 1 | 0 | loại | loại | loại | loại |
c, \(\dfrac{3\left(x-1\right)+10}{x-1}=3+\dfrac{10}{x-1}\Rightarrow x-1\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
x-1 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
x | 2 | 0 | 3 | -1 | 6 | -4 | 11 | -9 |
d, \(\dfrac{4\left(x-3\right)+3}{-\left(x-3\right)}=-4-\dfrac{3}{x+3}\Rightarrow x+3\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
x+3 | 1 | -1 | 3 | -3 |
x | -2 | -4 | 0 | -6 |
bài 1
để A∈Z
\(=>n+3\inƯ\left(1\right)=\left\{-1;1\right\}\)
\(=>\left\{{}\begin{matrix}n+3=-1\\n+3=1\end{matrix}\right.=>\left\{{}\begin{matrix}n=-4\\n=-2\end{matrix}\right.\)
vậy \(n\in\left\{-4;-2\right\}\) thì \(A\in Z\)
\(\dfrac{6x}{2x-1}\in Z\Rightarrow\dfrac{6x-3+3}{2x-1}\in Z\Rightarrow\dfrac{3\left(2x-1\right)+3}{2x-1}\in Z\)
\(\Rightarrow3+\dfrac{3}{2x-1}\in Z\)
\(\Rightarrow\dfrac{3}{2x-1}\in Z\)
\(\Rightarrow2x-1=Ư\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow x=\left\{-1;0;1;2\right\}\)
A = \(\dfrac{2x-1}{x+2}\)
a, A là phân số ⇔ \(x\) + 2 # 0 ⇒ \(x\) # -2
b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2
⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2
⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2
⇒ 5 ⋮ \(x\) + 2
⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}
⇒ \(x\) \(\in\) { -7; -3; -1; 3}
c, A = \(\dfrac{2x-1}{x+2}\)
A = 2 - \(\dfrac{5}{x+2}\)
Với \(x\) \(\in\) Z và \(x\) < -3 ta có
\(x\) + 2 < - 3 + 2 = -1
⇒ \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\) = -5 ⇒ - \(\dfrac{5}{x+2}\)< 5
⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)
Với \(x\) > -3; \(x\) # - 2; \(x\in\) Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1
\(\dfrac{5}{x+2}\) > 0 ⇒ - \(\dfrac{5}{x+2}\) < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)
Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)
Kết hợp (1); (2) và(3) ta có A(max) = 7 ⇔ \(x\) = -3
\(\dfrac{x+3}{x-1}=\dfrac{x-1+4}{x-1}=\dfrac{x-1}{x-1}+\dfrac{4}{x-1}=1+\dfrac{4}{x-1}\)
Để đạt GT nguyên thì \(\dfrac{4}{x-1}\in Z\)
\(\Rightarrow x-1\inƯ_{\left(4\right)}=\left\{-4;-2;-1;1;2;4\right\}\\ \Rightarrow x\in\left\{-3;-1;0;2;3;5\right\}\)
\(\dfrac{x-1+4}{x-1}=1+\dfrac{4}{x-1}\Rightarrow x-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
x-1 | 1 | -1 | 2 | -2 | 4 | -4 |
x | 2 | 0 | 3 | -1 | 5 | -3 |
x + 3 chia hết x - 1
x + 3 - ( x - 1 ) chia hết x - 1
2 chia hết x - 1
Do đó x - 1 thuộc Ư (2) = ( 1,-1,2,-2)
x - 1 = 1 suy ra x = 2
x - 1 = -1 suy ra x = 0
x - 1 = 2 suy ra x = 3
x - 1 = -2 suy ra x = -1
Vậy x = 2, 0, 3, -1
A = \(\dfrac{6n-3}{3n+1}\) ( đk : 3n + 1 # 0 ⇒ n # -1/3)
A \(\in\) Z ⇔ 6n - 3 ⋮ 3n + 1
⇒ 6n + 2 - 5 ⋮ 3n + 1
⇒ 2.( 3n + 1) - 5 ⋮ 3n + 1
⇒ 5 ⋮ 3n + 1
⇒ 3n + 1 \(\in\) { -5; -1; 1; 5}
⇒ n\(\in\) {-2; -2/3; 0; 4/3}
vì n \(\in\) Z nên n \(\in\) { -2; 0}
Vậy n \(\in\) { -2; 0}
Vì x nguyên nên 4x + 1 và 6x - 3 nguyên
Để \(A=\dfrac{4x+1}{6x-3}\) nguyên thì ( 4x + 1 ) ⋮ ( 6x - 3 )
Ta có [ 3( 4x + 1 )] ⋮ ( 6x - 3 ) hay ( 12x + 3 ) ⋮ ( 6x - 3 )
[ 2( 6x - 3 )] ⋮ ( 6x - 3 ) hay ( 12x - 6 ) ⋮ ( 6x - 3 )
⇒ [( 12x + 3 ) - ( 12x - 6 )] ⋮ ( 6x - 3 )
( 12x + 3 - 12x + 6 ) ⋮ ( 6x - 3 ) ⇒ 9 ⋮ ( 6x - 3 ) hay ( 6x - 3 ) ϵ Ư( 9 )
Ư( 9 ) = { \(\pm1;\pm3;\pm9\) }
Lập bảng giá trị
Vậy x ϵ { 2; -1; 1; 0 } để \(A=\dfrac{4x+1}{6x-3}\) nguyên
Vì x nguyên nên 4x + 1 và 6x - 3 nguyên
Để �=4�+16�−3A=6x−34x+1 nguyên thì ( 4x + 1 ) ⋮ ( 6x - 3 )
Ta có [ 3( 4x + 1 )] ⋮ ( 6x - 3 ) hay ( 12x + 3 ) ⋮ ( 6x - 3 )
[ 2( 6x - 3 )] ⋮ ( 6x - 3 ) hay ( 12x - 6 ) ⋮ ( 6x - 3 )
⇒ [( 12x + 3 ) - ( 12x - 6 )] ⋮ ( 6x - 3 )
( 12x + 3 - 12x + 6 ) ⋮ ( 6x - 3 ) ⇒ 9 ⋮ ( 6x - 3 ) hay ( 6x - 3 ) ϵ Ư( 9 )
Ư( 9 ) = { ±1;±3;±9±1;±3;±9 }
Lập bảng giá trị
Vậy x ϵ { 2; -1; 1; 0 } để �=4�+16�−3A=6x−34x+1 nguyên
nhớ đánh giá nhé >-<