K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2023

= 1 + 1/1! + 1/2! + 1/3! + ... + 1/2001

=2+1/2+......+1/2001

1/2=1.2

1/3<1/2.3

......

1/2001<1/2000.2001

1/2! + 1/3! + ... + 1/2001<1/1.2+1/1.3+.....+1/2000.2001

1/2! + 1/3! + ... + 1/2001<1-1/2+1/2-1/3+....+1/2000-1/2001

1/2! + 1/3! + ... + 1/2001<1-1/2001<1

1/2! + 1/3! + ... + 1/2001<1

vậy:1/2! + 1/3! + ... + 1/2001<3     nhớ gửi coin nhé! chúc bạn làm đúng :))

26 tháng 7 2023

Để tính tổng S = 1 + 3 + 3^2 + ... + 3^2006, ta sử dụng công thức tổng của cấp số nhân:

S = (3^(2007) - 1) / (3 - 1)
= (3^(2007) - 1) / 2

Để chứng minh 3B = (3^(2007) - 1)/2, ta thay B = S vào:

3B = 3 * (3^(2007) - 1) / 2
= (3^(2008) - 3)/2
= (3^(2008) - 1 - 2)/2
= (3^(2008) - 1)/2 - 1/2
= (3^(2007) - 1)/2 - 1/2
= (3^(2007) - 1) / 2

Do đó ta đã chứng minh được 3B = (3^(2007) - 1)/2.

3 tháng 2 2017

1 -3 + 5-7 +...+ 2001 - 2003 

= (-2) + (-2) +...+(-2) 

= -2 x  2002 

= - 4002

3 tháng 2 2017

-2004 nha ban

16 tháng 9 2018

( 99 - 1 ) : 2 + 1 = 50 ( số )

làm bừa thui,ai tích mình mình tích lại

Số số hạng là : 

Có số cặp là :

50 : 2 = 25 ( cặp )

Mỗi cặp có giá trị là :

99 - 97 = 2 

Tổng dãy trên là :

25 x 2 = 50

Đáp số : 50

16 tháng 9 2018

Ta có : \(S>\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\)

       \(\Rightarrow S>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

      \(\Rightarrow S>\frac{1}{2}-\frac{1}{10}=\frac{4}{10}=\frac{2}{5}\)           (1)

Ta lại có : \(S< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{8\cdot9}\)

          \(\Rightarrow S< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}\)

           \(\Rightarrow S< 1-\frac{1}{9}=\frac{8}{9}\)

Từ (1) và (2)  \(\Rightarrow\frac{2}{5}< S< \frac{8}{9}\)          ( đpcm )

15 tháng 2 2018

Ta có : 

\(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2013}}\)

\(2S=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\)

\(2S-S=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2013}}\right)\)

\(S=1-\frac{1}{2^{2013}}\)

\(S=\frac{2^{2013}-1}{2^{2013}}\)

Vì \(\frac{2^{2013}-1}{2^{2013}}< 1\) ( tử bé hơn mẫu nên bé hơn 1 ) nên \(S< 1\)

Vậy \(S< 1\)

15 tháng 2 2018

Cảm ơn bạn Phùng Minh Quân

30 tháng 6 2016

Đặt A=1/2−1/4+1/8−1/16+1/32−1/64A=1/2−1/4+1/8−1/16+1/32−1/64
2A=1−1/2+1/4−1/8+1/16−1/322A=1−1/2+1/4−1/8+1/16−1/32
3A=2A+A=1−1/64<1⇒A<1/3

17 tháng 1 2016

a/ta có:s=(1-3+32-33)+.................+(396-397+398-399)

=-20+.....................+396.(-20.(1+...................396))

suy ra s chia het cho -20

b/ 3s=3-32+33-34+.................+399-3100

3s+s=(3-32+33-34+..........................+399-3100 +(1-3+32-33)+............+398-399)

4s=1-3100

s=(1-3100):4

​vì s chia hết cho -20 suy ra s chia hết cho 4 suy ra 1-3100 chia hêt cho 4 suy ra 3100:4 dư 1

nếu đúng thì tíc cho mình 2 cái nhé!