Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
a) x² - 3 = 22
=> x² = 25
=> x = + 5
Vậy x = + 5
b) 2x³ + 5 = -11
2x³ = -16
x³ = -8
x = -2
Vậy x = -2
c) ( x + 2 )² = 81
=> x + 2 = 9
=> x = 7
Vậy x = 7
d) ( 2x + 1 )² = 25
=> 2x + 1 = 5
=> 2x = 4
=> x = 2
Vậy x = 2
e) 5x + 2 = 625
5x = 623 ( vô lí )
g) ( 2x - 3 )² = 36.
=> 2x - 3 = 6
=> 2x = 9
=> x = 4,5
Vậy x = 4,5
h) ( 2x - 1 )³ = -8
=> 2x - 1 = -2
=> 2x = -1
=> x = -1/2
Vậy x = -1/2
i) ( x - 1 )x + 2 = ( x - 1 )x + 6
=> [ (x - 1 )x - ( x - 1 )x ] = 6 - 2
=> 0 = 4 ( vô lí )
Vậy x thuộc rỗng.
k) x² + x = 0
=> x( x + 1 ) = 0
=> x = 0 hoặc x + 1 = 0
=> x = 0 hoặc x = -1
Vậy x = 0 hoặc x = -1
a/ 2/3.x+1/2=1/10
nên:2/3x=1/10-1/2
nên:2/3x=-2/5
suy ra :x=-2/5:2/3
vậy x=-3/5
a. 2/3x+1/2=1/10
2/3x=1/10-1/2
2/3x=-2/5
x=-2/5:2/3
x=-3/5
b.(7/2-2x).4/3=22/3
(7/2-2x).=22/3:4/3
7/2-2x=11/2
2x=7/2-11/2
2x=-2
x=-1
nho k cho minh voi nhe
(2x - 7) + 17 = 6
=> 2x - 7 = 6 - 17
=> 2x - 7 = -11
=> 2x = -11 + 7
=> 2x = -4
=> x = -4 : 2
=> x = -2
+) 12 -2(3 - 3x)= -2
=> 2(3 - 3x) = 12 + 2
=> 2(3 - 3x) = 14
=> 3 - 3x = 14 : 2
=> 3 - 3x = 7
=> 3x = 3 - 7
=> 3x = -4
=> x = -4/3
\(\left(x+1\right)\left(x-3\right)=0\)
=> \(\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)
Vậy...
Bài 1:
a) Ta có: \(\left(2x-1\right)^{20}=\left(2x-1\right)^{18}\)
\(\Leftrightarrow\left(2x-1\right)^{20}-\left(2x-1\right)^{18}=0\)
\(\Leftrightarrow\left(2x-1\right)^{18}\left[\left(2x-1\right)^2-1\right]=0\)
\(\Leftrightarrow\left(2x-1\right)^{18}\cdot\left(2x-2\right)\cdot2x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)
b) Ta có: \(\left(2x-3\right)^2=9\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=3\\2x-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)
c) Ta có: \(\left(x-5\right)^2=\left(1-3x\right)^2\)
\(\Leftrightarrow\left(x-5\right)^2-\left(3x-1\right)^2=0\)
\(\Leftrightarrow\left(x-5-3x+1\right)\left(x-5+3x-1\right)=0\)
\(\Leftrightarrow\left(-2x-4\right)\left(4x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{2}\end{matrix}\right.\)
Bài 2:
a) \(15^{20}-15^{19}=15^{19}\left(15-1\right)=15^{19}\cdot14⋮14\)
b) \(3^{20}+3^{21}+3^{22}=3^{20}\left(1+3+3^2\right)=3^{20}\cdot13⋮13\)
c) \(3+3^2+3^3+...+3^{2007}\)
\(=3\left(1+3+3^2\right)+...+3^{2005}\left(1+3+3^2\right)\)
\(=13\left(3+...+3^{2005}\right)⋮13\)
a, | x+3 | = -27/11 × 22/-9
=> |x + 3| = 6
=> x + 3 = 6 hoặc x + 3 = -6
=> x = 3 hoặc x = -9
vậy_
b, (x-3) × (2x - 7) = 0
=> x - 3 = 0 hoặc 2x - 7 = 0
=> x = 3 hoặc x = 7/2
vậy_
c, (x-1) + (x-2) + (x-3) + ... + (x-100) = 4950
=> x - 1 + x - 2 + x - 3 + ... + x - 100 = 4950
=> 100x - (1 + 2 + 3 + ... + 100) = 4950
=> 100x - (1 + 100).100 : 2 = 4950
=> 100x - 5050 = 4950
=> 100x = 10000
=> x = 10
a)
(2x-4)(x-22)=0
<=>2x-4=0 hoặc x-22=0
<=>x=2 hoặc x=22
b
(x-17)(x^2-16)=0
<=>x-17 =0 hoặc x^2-16=0
<=>x=17 hoặc x=4 hoặc x=-4
c
(x^2+3)(x+8)=0
Vì x^2+3>0
=>x+8=0
<=>x=-8
\(a,x^2-3=22\)
\(x^2=25\)
\(x^2=\left(\pm5\right)^2\)
\(\Rightarrow x=\pm5\)
\(b,2x^3+5=11\)
\(2x^3=6\)
\(x^3=3\)
ko tồn tại x
\(c,\left(x+2\right)^2=81\)
\(\Rightarrow\left(x+1\right)^2=\left(\pm9\right)^2\)
\(\Rightarrow\orbr{\begin{cases}x+1=9\\x+1=-9\end{cases}\Leftrightarrow\orbr{\begin{cases}x=8\\x=-10\end{cases}}}\)
a) x ^ 2 - 3 = 22
x ^ 2 = 22 + 3
x ^ 2 = 25
x ^ 2 = 5 ^ 2
x = 5
b) 2x^ 3 + 5 = 11
2x^ 3 = 11-5
2x^ 3 = 6
x^ 3 = 6 : 2
x ^ 3 = 3
x = 3
c) ( x+2 ) ^2 = 81
(x+2 ) ^2 = 9^2
x+ 2 = 9
x =9 - 2
x = 7