K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2016

Ta thấy \(n^2+n+1=n\left(n+1\right)+1\)

\(n\left(n+1\right)\) chỉ có tận cùng là 0 , 2, 4 nên \(n^2+n+1\) chỉ có tận  cùng là 1, 3, 7. 

Như vậy \(n^2+n+1\) không chia hết cho 10, từ đó suy ra nó không chia hết cho 2010. 

Vậy không tìm được số tự nhiên n sao cho \(n^2+n+1\) chia hết 2010.

Chúc em học tốt ^^

\(a;x^4⋮x^{2n}\Leftrightarrow4\ge2n\Leftrightarrow2\ge n\Rightarrow n=0;1;2\)

\(b;x^ny^3⋮x^2y^{n+1}\Leftrightarrow n\ge2;3\ge n+1\Leftrightarrow\hept{\begin{cases}n\ge2\\2\ge n\end{cases}\Rightarrow n=2}\)

3 tháng 8 2016

\(a,n^5-n=n.\left(n^4-1\right)=n.\left(n^2-1\right).\left(n^2+1\right)\)

\(=n.\left(n^2-1\right).\left(n^2-4+5\right)\)

\(=n.\left(n^2-1\right).\left(n^2-4\right)+5n.\left(n^2-1\right)\)

\(=n.\left(n-1\right).\left(n+1\right).\left(n-2\right).\left(n+2\right)+5n.\left(n-1\right).\left(n+1\right)\)
\(=\left(n-2\right).\left(n-1\right).n.\left(n+1\right).\left(n+2\right)+5\left(n-1\right).n.\left(n+1\right)\)

Vì (n-1).n.(n+1) là tích của 3 số nguyên liên tiếp nên chia hết cho 2 và 3

Mà (2;3)=1=>(n-1).n.(n+1) chia hết cho 6

=>5.(n-1).n.(n+1) chia hết cho (5.6)=30  (1)

Vì (n-2).(n-1).n.(n+1).(n+2) là tích của 5 số nguyên liên tiếp nên chia hết cho 5 và 6

Mà (5;6)=1=> (n-2).(n-1).n.(n+1).(n+2) chia hết cho 30  (2)

Từ (1);(2)=> (n-2).(n-1).n.(n+1).(n+2)+5(n-1).n.(n+1) chia hết cho 30

=>n5-n chia hết cho 30 (đpcm)

\(b,\left(n^2+n-1\right)^2-1=\left(n^2+n-1-1\right).\left(n^2+n-1+1\right)\)

\(=\left(n^2+n-2\right).\left(n^2+n\right)=\left(n^2+2n-n-2\right).n.\left(n+1\right)\)

\(=\left[n\left(n+2\right)-\left(n+2\right)\right].n.\left(n+1\right)=\left(n+2\right)\left(n-1\right).n.\left(n+1\right)\)

\(=\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\)

Vì (n-1).n.(n+1).(n+2) là tích 4 số nguyên liên tiếp mà trong 4 số nguyên liên tiếp cũng có 3 số nguyên liên tiếp

=>(n-1).n.(n+1).(n+2) chia hết cho 3 (3)

Vì (n-1).n.(n+1).(n+2) là tích 4 số nguyên liên tiếp nên chia hết cho 8 (4)

Từ (3);(4);lại có (3;8)=1

=>(n-1).n.(n+1).(n+2) chia hết cho 24

=>(n2+n-1)2-1 chia hết cho 24 (đpcm)