Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>|x-1/4|=3/4
=>x-1/4=3/4 hoặc x-1/4=-3/4
=>x=1 hoặc x=-1/2
b: \(\left|x+\dfrac{1}{2}\right|=\dfrac{1}{2}-\dfrac{9}{4}=\dfrac{2-9}{4}=-\dfrac{7}{4}\)(vô lý)
c: \(\Leftrightarrow\left[{}\begin{matrix}2x+5=1-x\\2x+5=x-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-4\\x=-6\end{matrix}\right.\Leftrightarrow x\in\left\{-\dfrac{4}{3};-6\right\}\)
e: =>|3/2-x|=0
=>3/2-x=0
hay x=3/2
a) \(\left(-0,6\right)^6\cdot x=\left(\frac{-3}{5}\right)^8\)
\(x=\left(\frac{-3}{5}\right)^8:\left(\frac{-3}{5}\right)^6\)
\(x=\left(-\frac{3}{5}\right)^2=\frac{9}{25}\)
b) \(\left(0,5-x\right)^3=-8=\left(-2\right)^3\)
\(\Leftrightarrow0,5-x=-2\)
\(\Leftrightarrow x=2,5\)
Vậy,.................
Bài 1:a/ 1.6-Ix-0.2I=0
Có 2 trường hợp:
TH1: x-0.2=1.6
=> x=1.6+0.2=1.8
TH2: x-0.2=-1.6
=> x=-1.4
b/ Có 2 trường hợp:
TH1:x-1.5=0=>x=1.5
TH2: 2.5-x=0=> x=2.5
Bài 2: a/ Vì Ix-3.5I\(\ge0\)
=> Amax=0.5-0=0.5 khi x=3.5
b/ Vì -I1.4-xI \(\le0\)
Nên Bmax=0-2=-2 khi x=1.4
1) \(\left|x\right|< 4\Leftrightarrow-4< x< 4\)
2) \(\left|x+21\right|>7\Leftrightarrow\orbr{\begin{cases}x+21>7\\x+21< -7\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>-14\\x< -28\end{cases}}\)
3) \(\left|x-1\right|< 3\Leftrightarrow-3< x-1< 3\Leftrightarrow-2< x< 4\)
4) \(\left|x+1\right|>2\Leftrightarrow\orbr{\begin{cases}x+1>2\\x+1< -2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>1\\x< -3\end{cases}}\)
\(\left|x+\frac{1}{2}\right|+\left|3-y\right|=0\)
Vì \(\hept{\begin{cases}\left|x+\frac{1}{2}\right|\ge0\\\left|3-y\right|\ge0\end{cases}}\Rightarrow\)\(\left|x+\frac{1}{2}\right|+\left|3-y\right|\ge0\)
Dấu "="\(\Leftrightarrow\hept{\begin{cases}\left|x+\frac{1}{2}\right|=0\\\left|3-y\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{2}\\y=3\end{cases}}\)
Bài giải
\(\left|\sqrt{x+1}-0,5\right|-0,6=\sqrt{\left(-3\right)^2}+0,4\)
\(\left|\sqrt{x+1}-0,5\right|-0,6=3+0,4\)
\(\left|\sqrt{x+1}-0,5\right|-0,6=3,4\)
\(\left|\sqrt{x+1}-0,5\right|=3,4+0,6\)
\(\left|\sqrt{x+1}-0,5\right|=4\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x+1}-0,5=-4\\\sqrt{x+1}-0,5=4\end{cases}\Rightarrow}\orbr{\begin{cases}\sqrt{x+1}=-3,5\text{ ( loại ) }\\\sqrt{x+1}=4,5\end{cases}}\Rightarrow\text{ }x+1=20,25\text{ }\Rightarrow\text{ }x=19,25\)
\(\Rightarrow\text{ }x=19,25\)
Ta có: \(|\sqrt{x+1}-0,5|=4\)\(\left(ĐK:x\ge-1\right)\)
<=> \(\orbr{\begin{cases}\sqrt{x+1}-0,5=4\\\sqrt{x+1}-0,5=-4\end{cases}}\)
<=> \(\orbr{\begin{cases}x=19,25\\x\in\varnothing\end{cases}}\)
( 1,41423)3 : \(x\) = ( 1,41423)2
\(x\) = (1,41423)3 : (1,41423)2
\(x\) = (1,41423)(3-2)
\(x\) = 1,414231
\(x\) = 1,41423
(1,41423)3: x=(1,41423)2
x = \(\left(1,41423\right)^3:\left(1,41423\right)^2\)
x = 1,41423