Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta BAC\) Và \(\Delta ACH\) có :
\(\widehat{BAC}\)\(=\)\(\widehat{AHC}\) ( cùng = 900 )
\(\widehat{C}\)là góc chung
\(\Rightarrow\) \(\Delta BAC\)\(~\)\(\Delta AHC\) ( g - g ) (1)
\(\Rightarrow\)\(\frac{BC}{AC}=\frac{AB}{AH}\)\(\Rightarrow BC.AH=AB.AC\)
b) Xét \(\Delta AHC\)có :
K là trung điểm của CH
I là trung điểm của AH
\(\Rightarrow\)IK // AC
Do IK // AC :
\(\Rightarrow\)\(\Delta HIK\)\(~\)\(\Delta HAC\) (2)
Từ (1) và (2) =) \(\Delta HIK\)\(~\)\(\Delta ABC\)
Do \(HE\)\(\perp\)\(AB\)\(\Rightarrow\)\(\widehat{A\text{E}H}\)= 900
\(HF\)\(\perp\)\(AC\)\(\Rightarrow\)\(\widehat{FHE}\)= 900
Xét tứ giác AEHF có:
\(\widehat{BAC}=\widehat{A\text{E}H}=\widehat{FHE}\)\(=90^0\)
\(\Rightarrow\)AEHF là hình chữ nhật \(\Rightarrow\) AE = HF
Xét \(\Delta ABC\)\(\perp\)tại \(A\)
Áp dụng định lí py - ta - go
BC2 = AB2 + AC2
52 = 32 + AC2
AC2 = 16
AC = 4 ( cm )
Ta có ; \(S_{\Delta ABC}\)\(=\frac{AB.AC}{2}\)\(=\frac{3.4}{2}=6\)cm2
\(S_{\Delta ABC}=\frac{1}{2}.BC.AH\)\(=\frac{1}{2}.5.AH=2,5.AH\)
\(\Rightarrow2,5.AH=6\)\(\Rightarrow AH=2,4\)cm
Xét \(\Delta AHC\)\(\perp\)tại A
Áp dụng định lí py - ta - go
AC2 = AH2 + HC2
42 = (2,4)2 + CH2
CH2 = 10,24
CH = 3,2 cm
Ta có : \(S_{\Delta AHC}=\frac{AH.AC}{2}=\)\(\frac{2,4.3,2}{2}=3,84\)cm2
\(S_{\Delta AHC}=\frac{1}{2}.AC.HF\)\(=\frac{1}{2}.4.HF=2.HF\)
\(\Rightarrow\)2.HF = 3.84
HF = 1.92 cm
\(\Rightarrow A\text{E}=1,92\)( Vì HF = AE , cmt)
Bài 7:
Đặt a=A'B',b=A'C', c=B'C'
Theo đề,ta có: a/6=b/8=c/10
mà cạnh nhỏ nhất trong tam giác A'B'C' là 9cm
nên b/8=c/10=9/6=3/2
=>b=12cm; c=15cm
a) Xét tam giác ABC có : BN = CN
AP = PC
suy ra : NP là đường trung bình của tam giác ABC
suy ra : NP song song với AB và NP = AB/2
Xét tam giác ABC có : AM = BM ; BN = CN
suy ra MN là đường trung bình của tam giác ABC
suy ra MN song song với AC và MN = AC/2
Xét tứ giác AMNP có : MN song song với AP ( MN song song AC )
NP song song với MA ( NP song song AB )
suy ra : tứ giác AMNP là hbh
mà góc BAC = 90 độ
suy ra : hbh AMNP là hcn
b) Ta có : công thức tính diện tích hcn là : a.b ( trong đó a,b là chiều dài hai cạnh kề nhau của hcn )
suy ra : công thức tính diện tích hcn AMNP là :
SAMNP = MN.NP
Ta có : MN = AC/2
mà AC = 8
suy ra : MN = 8/2 = 4cm
Ta có : NP = AB/2
mà AB = 6
suy ra : NP = 6/2 = 3cm
suy ra : diện tích hcn AMNP = 4.3 = 12 (cm2)
c) phần c hình như sai rồi á bạn
d) Ta có : AMNP là hcn ( đã C/M ở phần a )
Để hcn AMNP là hình vuông
khi và chỉ khi : MA = MN
mà MA = BA/2
MN = CA/2
suy ra : để hcn nhật AMNP là hv thì AB = AC
#)Giải :
(Bạn tự vẽ hình :P)
a) Xét ΔABC có:
IB = IA ( I là tia đối của AB)
BM = CM (M là tia đối của BC)
=> IM là đương trung bình của ΔABC
=> IM // AC và IM = 1/2AC
mà AK = 1/2AC (K là tia đối của AC) và K thuộc AC
=> IM // AK và IM = AK
=> Tứ giác AIMK là hình bình hành có góc A = 90o
=> AIMK là hình chữ nhật
Có : IA = IB = AB/2= 6/2= 3 (I là tia đối của AB)
AK = CK = AC/2= 8/2= 4 (K là tia đối của AC)
Diện tích hình chữ nhật AIMK :
SAIMK = AI.AK = 3.4 = 12 cm2
b) Áp dụng Py-ta-go vào Δ vuông ABC có:
BC2 = AB2 + AC2
hay BC2 = 62 + 82 = 100
=> BC = 10
Xét Δ vuông ABC có :
AM là đường trung tuyến ứng với BC
=> AM = 1/2BC = 1/2.10
=> AM = 5
Vậy AM = 5cm
c) Có IM = AK (cạnh đối hình chữ nhật AIMK)
mà JI = JM = 1/2IM và SA = SK = 1/2AK
=> JI = JM = SA = SK (1)
Có IA = MK (cạnh đối hình chữ nhật AIMK )
mà PI = PA = 1/2IA và HM = HK = 1212MK
=> PI = PA = HM = HM (2)
Có góc A = góc I = góc M = góc K (3)
Từ (1) (2) và (3) suy ra :
ΔPIJ = ΔPAS = ΔHKS = ΔHKJ (c-g-c)
=> JP = JH = SP = SH (các cạnh tương ứng )
=> Tứ giác JPSH là hình thoi
=> PH vuông góc với JS (tính chất đường chéo hình thoi)
Trong Δ ABC có : H là trung điểm của BA và K là trung điểm của CA => HK =1/2 BC
* CMTT* => IH = 1/2 CA => IK = 1/2 AB
=> IH = 4 , IK= 3
Ta có : BA^2 + AC^2 = BC^2 ( Pitago)
=> BC = 10
=> HK = 5
=> CV : IH + IK + HK = 4 + 3 + 2 = 12
Tick minh với!!