K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2022

9 = 32; 81 = 92; 121 = 112 vậy 9; 81; 121 là số chính phương (theo khái niệm về một số chính phương)

392 có tận cùng là 2 vậy 392 không phải là số chính phương vì số chính phương không thể có tận cùng là 2; 3; 7; 8 (theo tính chất của một số chính phương) 

9 tháng 8 2022

9, 81, 121 là số chính phương. 392 không phải nhé.

 

8 tháng 5 2015

tuy ko biết làm nhưng cứ xin cho cái ****

:D

9 tháng 12 2019

(SCP là viết tắt của số chính phương)

Ta có: 13 = 1; 23 = 8; 33 = 27; 43 = 64.

● 13 + 23 = 1 + 8 = 9.

Mà 9 = 32 là SCP (vì là bình phương của 3) nên 13 + 23 là SCP.

30 tháng 3 2017

13 + 23 + 33 = 1 + 8 + 27 = 36.

Mà 36 = 62 là SCP (vì là bình phương của 6) nên 13 + 23 + 33 là SCP

12 tháng 1 2016

Ý bạn là: CMR:Tổng bình phương của 4 số tự nhiên liên tiếp không phải là số chính phương

Gọi 4 số đó là n; n + 1; n + 2; n + 3

Ta có:

Đặt A = n(n + 1)(n + 2)(n + 3)

=> A + 1 = n(n + 1)(n + 2)(n + 3) + 1 

=> A + 1 = [n(n + 3)][(n + 1)(n + 2)] + 1

=> A + 1 = (n2 + 3n)(n2 + 3n + 2) + 1

=> A + 1 = (n2 + 3n)2 + 2(n2 + 3n) + 1

=>  A + 1 = (n2 + 3n + 1)2 là số chính phương

      A = (n2 + 3n)2 + 2(n2 + 3n)

Lại có:

(n2 + 3n)2 < (n2 + 3n) + 2(n2 + 3n) = A và A < A + 1

=> (n2 + 3n)2 < A < A + 1

=> (n2 + 3n)2 < A < (n2 + 3n + 1)2
=> A không là số chính phương (Vì (n2 + 3n)2 và (n2 + 3n + 1)2 là 2 số chính phương liên tiếp)

Vậy...

29 tháng 1 2018

13 + 23 + 33 + 43 = 1 + 8 + 27 + 64 = 100.

Mà 100 = 102 là SCP (vì là bình phương của 10) nên 13 + 23 + 33 + 43 là SCP.

Vậy mỗi tổng đã cho đều là số chính phương.

2 tháng 7 2021

2. 

Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x\(\in\) N)

 Ta có : x (x+1) (x+2 ) (x+3 ) +1 

 =(  x2 + 3x ) (x2 + 2x + x +2 )  +1 

= (  x2 + 3x ) (x2 +3x + 2 ) +1  (*)

Đặt t = x2 + 3x  thì  (* ) =  t ( t+2 ) + 1=  t2 + 2t +1  =  (t+1) = (x2 + 3x + 1 )2

=>  x (x+1) (x+2 ) (x+3 ) +1  là số chính phương 

hay tích 4 số tự nhiên liên tiếp  cộng  1 là số chính phương