\(8+8^2+8^3+...+8^{59}+8^{60}\)chia hết cho 73

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2016

A = 8 + 8^2 +8^3 +...+ 8^58+8^59+8^60

   = (8+8^2 + 8^3) +...+ (8^58+8^59 +8^60)

   =8( 1+8+8^2)+...+8^58(1+8+8^2)

   = 8. 73 + ......+8^58 .73

   = 73.( 8+...+8^58) chia hết cho 73

4 tháng 1 2018

Ta có:

88 + 220

= (23)8 + 220

= 23 . 8 + 220

= 220 . 24 + 220

= 220 . (16 + 1)

= 220 . 17 \(⋮\) 17(đpcm)

13 tháng 7 2017

Ta có: \(8^{34}-8^{33}-8^{32}=8^{32}\left(8^2-8-1\right)\)

\(=8^{32}.55\)

Mà 55 chia hết cho 11 nên \(8^{32}.55⋮11\)

\(\Rightarrow\)đpcm

13 tháng 7 2017

bạn ơi giải thích

1 tháng 3 2018

mình ghi lại đề nhé

Chứng tỏ rằng :

a, 1028 + 8  chia hết cho 72

b, 8+ 220 chia hết cho 17

c, 10n + 18n - 1 chia hết cho 27

d, 10n +72n - 1 chia hết cho 81

1 tháng 3 2018

a) 1028 = (2.5)28 = 228.528 => 1028 chia hết cho 23 hay 1028 chia hết cho 8 => 1028 + 8 chia hết cho 8

Mà 1028 + 8 = 1000...08 có tổng các chữ số bằng 9 => 1028 + 8 chia hết cho 9 

=> 1028 + 8 chia hết cho 8.9 = 72

b) 8+ 220 = (23)+ 220 = 224 + 220 = 220.(2+ 1) = 220.17 chia hết cho 17 => 8+ 220 chia hết cho 17

c) 10+ 18n - 1 = (10- 1) - 9n + 27n = 999...9 - 9n + 27n (Có n chữ số 9)

= 9.111...1 - 9n + 27n   (Có n chữ số 1)

= 9.(111...1 - n) + 27n

Nhận xét: 111...1 có tổng các chữ số là 1+ 1 + 1+ ..+ 1 = n => 111...1 - n chia hết cho 3

=> 9.(111...1 - n) chia hết cho 9.3 = 27

Mà 27n chia hết cho 27

Nên 9.(111...1 - n) + 27n chia hết cho 27

Vậy....

d) 10+ 72n - 1 = (10- 1) - 9n + 81n = 99...9 - 9n + 81n  (Có n chữ số 9)

= 9.(11..1 - n) + 81n

Nhận  xét: 111...1 có tổng các chữ số là n => 111...1 - n chia hết cho 9 

=> 9.(11...1 - n) chia hết cho 9.9 = 81

Mà 81n chia hết cho 81

Nên 9.(11..1 - n) + 81n chia hết cho 81

Vậy...

21 tháng 8 2018

Chúng tỏ rằng : 

a) M = 4^10 - 2^18 chia hết cho 3 

M = 4^10 - 2^18 

M = ( 2^2 )^10 - 2^18 

M = 2^20 - 2^18 

M = 2^18 . 2^2 - 2^18 . 1 

M = 2^18 . 4 - 2^18 . 1 

M = 2^18 . ( 4 - 1 ) 

M = 2^18 . 3 chia hết cho 3 

Vậy M chia hết cho 3 

7 tháng 8 2018

a)  \(A=1+2+3^2+....+3^{11}\)

\(=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{10}+3^{11}\right)\)

\(=\left(1+3\right)+3^2\left(1+3\right)+....+3^{10}\left(1+3\right)\)

\(=\left(1+3\right)\left(1+3^2+...+3^{10}\right)\)

\(=4\left(1+3^2+...+3^{10}\right)\)\(⋮\)\(4\)

b)  \(B=16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}.\left(2^5+1\right)=2^{15}.33\)\(⋮\)\(33\)

c) \(C=10^{28}+8=1000...008\)(27 chữ số 0)

Nhận thấy:  tổng các chữ số của C chia hết cho 9   =>  C chia hết cho 9

                   3 chữ số tận cùng của C chia hết cho 8  =>  C chia hết cho 8

mà (8;9) = 1   =>  C chia hết cho 72

d) \(D=8^8+2^{20}=2^{24}+2^{20}=2^{20}\left(2^4+1\right)=2^{20}.17\)\(⋮\)\(17\)

2 tháng 2 2017

\(P=4a^2+4a\)

\(\Rightarrow P=4\left(a^2+a\right)⋮2\) (1)

\(\Rightarrow P=4\left(a^2+a\right)⋮4\) (2)

Từ (1) và (2) \(\Rightarrow P=4\left(a^2+a\right)⋮8\)

\(\Rightarrow P=4a^2+4a⋮8\left(đpcm\right)\)

27 tháng 10 2017

     \(M=7^1+7^2+7^3+7^4+7^5+7^6\)

\(\Rightarrow M=\left(7^1+7^2\right)+\left(7^3+7^4\right)+\left(7^5+7^6\right)\)

\(\Rightarrow M=7.\left(1+7\right)+7^3.\left(1+7\right)+7^5.\left(1+7\right)\)

\(\Rightarrow M=7.8+7^3.8+7^5.8\)

\(\Rightarrow M=8.\left(7+7^3+7^5\right)⋮8\left(ĐPCM\right)\)

27 tháng 10 2017

=7(7^0+7^1+7^2+7^3+7^4+7^5)

=7*19608

mà 19608 chia hết cho 8

Suy ra: 7*19608chia hết cho 8

Suy ra: 7^1+7^2+7^3+7^4+7^5+7^6 chia hết cho 8