K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2016

Câu 1:

a)A=|x+1|+2016

       Vì |x+1|\(\ge\)0

           Suy ra:|x+1|+2016\(\ge\)2016

     Dấu = xảy ra khi x+1=0

                                x=-1

 Vậy MinA=2016 khi x=-1

b)B=2017-|2x-\(\frac{1}{3}\)|

       Vì -|2x-\(\frac{1}{3}\)|\(\le\)0

             Suy ra:2017-|2x-\(\frac{1}{3}\)|\(\le\)2017

    Dấu = xảy ra khi \(2x-\frac{1}{3}=0\)

                               \(2x=\frac{1}{3}\)

                                \(x=\frac{1}{6}\)

Vậy Max B=2017 khi \(x=\frac{1}{6}\)

c)C=|x+1|+|y+2|+2016

         Vì |x+1|\(\ge\)0

              |y+2|\(\ge\)0

     Suy ra:|x+1|+|y+2|+2016\(\ge\)2016

                Dấu = xảy ra khi x+1=0;x=-1

                                           y+2=0;y=-2

Vậy MinC=2016 khi x=-1;y=-1

d)D=-|x+\(\frac{1}{2}\)|-|y-1|+10

      =10-|x+\(\frac{1}{2}\)|-|y-1|

             Vì      -|x+\(\frac{1}{2}\)|\(\le\)0

                         -|y-1|  \(\le\)0

    Suy ra:      10-|x+\(\frac{1}{2}\)|-|y-1|    \(\le\)10

Dấu = xảy ra khi \(x+\frac{1}{2}=0;x=-\frac{1}{2}\)

                           y-1=0;y=1

          Vậy Max D=10 khi x=\(-\frac{1}{2}\);y=1           



 

16 tháng 8 2016

Bài 1:

a)Ta thấy: \(\left|x+1\right|\ge0\)

\(\Rightarrow\left|x+1\right|+2016\ge0+2016=2016\)

\(\Rightarrow A\ge2016\)

Dấu = khi x=-1

Vậy MinA=2016 khi x=-1

b)Ta thấy:\(\left|2x-\frac{1}{3}\right|\ge0\)

\(\Rightarrow-\left|2x-\frac{1}{3}\right|\le0\)

\(\Rightarrow2017-\left|2x-\frac{1}{3}\right|\le2017-0=2017\)

\(\Rightarrow B\le2017\)

Dấu = khi x=1/6

Vậy Bmin=2017 khi x=1/6

c)Ta thấy:\(\begin{cases}\left|x+1\right|\\\left|y+2\right|\end{cases}\ge0\)

\(\Rightarrow\left|x+1\right|+\left|y+2\right|\ge0\)

\(\Rightarrow\left|x+1\right|+\left|y+2\right|+2016\ge0+2016=2016\)

\(\Rightarrow D\ge2016\)

Dấu = khi x=-1 và y=-2

Vậy MinD=2016 khi x=-1 và y=-2

d)Ta thấy:\(\begin{cases}-\left|x+\frac{1}{2}\right|\\-\left|y-1\right|\end{cases}\le0\)

\(\Rightarrow-\left|x+\frac{1}{2}\right|-\left|y-1\right|\le0\)

\(\Rightarrow-\left|x+\frac{1}{2}\right|-\left|y-1\right|+10\le0+10=10\)

\(\Rightarrow D\le10\)

Dấu = khi x=-1/2 và y=1

Vậy MaxD=10 khi x=-1/2 và y=1

10 tháng 12 2016

bài 1 câu a)

x/5=5/x suy ra x.x=5.5

x^2=25=5^2

x=5

 

10 tháng 12 2016

1a) \(\frac{x}{5}\) = \(\frac{5}{x}\)

\(\frac{x}{5}\) = \(\frac{5}{x}\) nên x. x= 5. 5

x\(^2\) = 25

x\(^2\) = 5\(^2\)

-> x\(^2\) = 5\(^2\) hoặc x= -5\(^2\)

=> x= 5 hoặc x= -5

Chúc bn học tốt! haha

20 tháng 6 2016

a) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)

\(\Rightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)

\(\Rightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)

Vì \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne0\) nên x+1=0

=>x=0-1

=>x-1

20 tháng 6 2016

a:x+1/10+x+1/11+x+1/12=x+1/13+x+1/14

 <=>(x+1)(1/10 + 1/11+1/12) =(x+1)(1/13 + 1/14) 
<=>(x+1)(1/10 + 1/11+1/12 -1/13 -1/14)=0 
<=> x+1=0(vì biểu thức 1/10 + 1/11 +1/12-1/13-1/14#0) 
<=>x= -1

b:hình như sai đề

27 tháng 12 2016

Vì (x - 1)2016 ≥ 0 ; (y - 2)2016 ≥ 0 | x + y + z | ≥ 0 với mọi x

Để (x - 1)2016 + (y + 2)2016 + | x + y - z | = 0 khi (x - 1)2016 = 0 ; (y + 2)2016 = 0; | x + y - z | = 0

<=> x - 1 = 0 và y + 2 = 0 => x = 1 và y = - 2

Thay x = 1 và y = - 2 vào BT : | x + y - z | = 0 ta được :

| 1 - 2 - z | = 0 <=> 1 - 2 - z = 0 <=> - 1 - z = 0 => z = - 1

Vậy x = 1 ; y = - 2 ; z = - 1

11 tháng 6 2016

a)(x-2016)^x.(x-2016)-(x-2015)^x.(x-2015)^10=0

mik chỉ làm đc đến đây thôi mk lớp 6 :)

5 tháng 8 2021

Bn ế r, 2018 đến h mà ko cs ai tl

nhưng mà câu hỏi đc cập nhật 4 phút trước mà !

28 tháng 2 2022

Thay x=1 vào đa thức ta có:

\(a^2.x^{2014}-5a.x^{2015}-24.x^{2016}=0\\ \Leftrightarrow a^2.1^{2014}-5a.1^{2015}-24.1^{2016}=0\\ \Leftrightarrow a^2-5a-24=0\\ \Leftrightarrow\left(a^2-8a\right)+\left(3a-24\right)=0\\ \Leftrightarrow a\left(a-8\right)+3\left(a-8\right)=0\\ \Leftrightarrow\left(a-8\right)\left(a+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=8\\a=-3\end{matrix}\right.\)

28 tháng 2 2022

thank you very much!