\(\frac{x}{7}=\frac{y}{3}\)và x-24=y

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2016

\(\frac{x}{7}=\frac{y}{3};x-7=24\)

áp dụng tính chất của dãy tỉ số bằng nhau ta có:

=> \(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{24}{3}=8\)

* \(\frac{x}{7}=8\)

(=) \(x=8.7=56\)

* \(\frac{y}{3}=8\)

(=) \(y=8.3=24\)

13 tháng 11 2016

1    Ta có x -24 = y

Suy ra x - y = 24

               Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

      x/7 = y/3 = x-y/7-3 =24/4=6

suy ra x= 42

           y = 18

13 tháng 11 2016

thank you

28 tháng 9 2019

a) Vì \(\frac{x}{7}=\frac{y}{3}=\frac{z}{4}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có: 

\(\frac{x}{7}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{7+3+4}=\frac{28}{14}=2\)

\(\Rightarrow\hept{\begin{cases}x=2.7=14\\y=3.3=9\\z=3.4=12\end{cases}}\)

Vậy ...

b) Vì \(\frac{x}{2}=\frac{y}{3}=\frac{z}{6}\)

\(\Rightarrow\frac{3x}{6}=\frac{2y}{6}=\frac{2z}{12}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có: 

\(\frac{3x}{6}=\frac{2y}{6}=\frac{2z}{12}=\frac{3x-2y-2z}{6-6-12}=\frac{24}{-12}=-2\)

\(\Rightarrow\hept{\begin{cases}x=-2.2=-4\\y=-2.3=-6\\z=-2.6=-12\end{cases}}\)

Vậy ...

28 tháng 9 2019

a)\(\frac{x}{7}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{7+3+\text{4}}=\frac{24}{14}=\frac{12}{7}\)

=>\(\frac{x}{7}=\frac{12}{7}\) 

x=12

=>\(\frac{y}{3}=\frac{12}{7}\)

y=\(\frac{36}{7}\)                            

=>\(\frac{z}{4}=\frac{12}{7}\)

z=48/7

vây x=12;y=36/7;z=48/7

18 tháng 12 2016

a)Theo bài ra ta có:

\(\frac{x}{7}=\frac{y}{3}\)\(;\)\(x-24=y\Rightarrow x-y=24\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{24}{4}=6\)

\(\Rightarrow\begin{cases}\frac{x}{7}=4\Rightarrow x=4\cdot7=28\\\frac{y}{3}=4\Rightarrow y=4\cdot3=12\end{cases}\)

b)Theo bài ra ta có:

\(x-y=4009;\frac{x-1}{2005}=\frac{3-y}{2006}\)

Áp dụng tính chất dãy tỉ số bằng nhau là:

\(\frac{x-1}{2005}=\frac{3-y}{2006}=\frac{x-1-3-y}{2005-2006}=\frac{x-y-4}{-1}=\frac{4009-4}{-1}=-4005\)

\(\Rightarrow\begin{cases}\frac{x-1}{2005}=-4005\Rightarrow x-1=-8030025\Rightarrow x=-8030024\\\frac{3-y}{2006}=-4005\Rightarrow3-y=-8034030\Rightarrow y=8034033\end{cases}\)

 

 

 

 

 

21 tháng 10 2018

Mình làm 1 phép thôi nha những phép còn lại bạn tự nghĩ nhé !

\(\frac{x}{7}=\frac{y}{3}\) và \(x-24=y\)'

Ta có : \(x-24=y\)   hay cũng có thể viết \(x-y=24\)

Ta lại có : \(\frac{x}{7}=\frac{y}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau nên ta được :

\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{24}{4}=6\)          (    vì \(x-y=24\) )

\(\Rightarrow\frac{x}{7}=6\Rightarrow x=6\cdot7\Rightarrow x=42\)

\(\Rightarrow\frac{y}{3}=6\Rightarrow y=6\cdot3\Rightarrow y=18\)

Vậy \(x=42\)         và                 \(y=18\)

2 tháng 3 2017

a)\(\frac{4+x}{7+y}=\frac{4}{7}\Leftrightarrow7\left(4+x\right)=4\left(7+y\right)\Leftrightarrow28+7x=28+4y\Leftrightarrow7x=4y\Leftrightarrow\frac{x}{4}=\frac{y}{7}\)

Áp dụng tính chất của dãy tỉ số bằng nhau: \(\frac{x}{4}=\frac{y}{7}=\frac{x+y}{4+7}=\frac{55}{11}=5\)

=> x=5.4=20; y=5.7=35

b) \(x=\frac{z}{2}\Rightarrow\frac{x}{10}=\frac{z}{20}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{20}=\frac{2y}{30}=\frac{3z}{60}\)

Áp dụng tính chất của dãy tỉ số bằng nhau: \(\frac{x}{10}=\frac{y}{15}=\frac{z}{20}=\frac{2y}{30}=\frac{3z}{60}=\frac{x+2y-3z}{10+30-60}=\frac{-24}{-20}=\frac{6}{5}\)

=> \(x=\frac{6}{5}.10=12;y=\frac{6}{5}.15=30;z=\frac{6}{5}.20=24\)

2 tháng 3 2020

a) \(\frac{-24}{x}=\frac{3}{7}\)
\(\Rightarrow-24.7=3x\)
\(\Rightarrow-168=3x\)
\(\Rightarrow x=-168:3\)
\(\Rightarrow x=-56\)
Vậy x = -56
b) Ta có : \(\frac{x}{5}=\frac{y}{7}=\frac{3x}{3.5}=\frac{2y}{2.7}=\frac{3x}{15}=\frac{2y}{14}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{7}=\frac{3x}{15}=\frac{2y}{14}=\frac{3x-2y}{15-14}=\frac{2}{1}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{5}=2\Rightarrow x=2.5=10\\\frac{y}{7}=2\Rightarrow y=2.7=14\end{cases}}\)
Vậy x = 10, y = 14

2 tháng 3 2020

a) \(\frac{-24}{x}=\frac{3}{7}\)\(\Leftrightarrow3x=-24.7\)\(\Leftrightarrow3x=-168\)

\(\Leftrightarrow x=-56\)

Vậy \(x=-56\)

b) \(\frac{x}{5}=\frac{y}{7}=\frac{3x}{15}=\frac{2y}{14}=\frac{3x-2y}{15-14}=\frac{-2}{1}=-2\)

\(\Rightarrow x=-2.5=-10\)\(y=-2.7=-14\)

Vậy \(x=-10\)và \(y=-14\)

16 tháng 7 2019

a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{x}{-10}=\frac{y}{6}=\frac{z}{3}\) => \(\frac{2x}{-20}=\frac{3y}{18}=\frac{2z}{6}=\frac{2x+3y-2z}{-20+18-6}=\frac{16}{-8}=-2\)

=> \(\hept{\begin{cases}\frac{x}{-10}=-2\\\frac{y}{6}=-2\\\frac{z}{3}=-2\end{cases}}\) => \(\hept{\begin{cases}x=-2.\left(-10\right)=20\\y=-2.6=-12\\z=-2.3=-6\end{cases}}\)

Vậy ...

b) Ta có: -2x = 5y => x/5 = y/-2

Áp dụng t/c của dãy tỉ số bằng nhau , ta có:

  \(\frac{x}{5}=\frac{y}{-2}=\frac{x+y}{5-2}=\frac{30}{3}=10\)

=> \(\hept{\begin{cases}\frac{x}{5}=10\\\frac{y}{-2}=10\end{cases}}\) => \(\hept{\begin{cases}x=10.5=50\\y=10.\left(-2\right)=-20\end{cases}}\)

Vậy ...

16 tháng 7 2019

a. Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{-10}=\frac{y}{6}=\frac{z}{3}=\frac{2x+3y-2z}{-20+18-6}=\frac{16}{-8}=-2\)

=> x = -2.(-10) = 20

     y = -2.6 = -12

     z = -2.3 = -6

b. -2x = 5y => \(\frac{x}{5}=\frac{y}{-2}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{5}=\frac{y}{-2}=\frac{x+y}{5+\left(-2\right)}=\frac{30}{3}=10\)

=> x = 10.5 = 50

     y = 10.(-2) = -20

c. Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{-3}=\frac{y}{-7}=\frac{2x+4y}{-6+\left(-28\right)}=\frac{68}{-34}=-2\)

=> x = -2.(-3) = 6

     y = -2.(-7) = 14

d. Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{1}=\frac{y}{6}=\frac{z}{3}=\frac{2x+3y-4z}{2+18-12}=\frac{-24}{8}=-3\)

=> x = -3

     y = -3.6 = -18

     z = -3.3 = -9

15 tháng 12 2016

a) Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2005}=\frac{3-y}{2006}=\frac{x-1+3-y}{2005+2006}=\frac{2+x-y}{4011}=\frac{2+4009}{4011}=1\)

=> \(\begin{cases}x-1=2005\\3-y=2006\end{cases}\)\(\Leftrightarrow\begin{cases}x=2006\\y=-2003\end{cases}\)

b) Có: \(3x=y\Rightarrow\frac{x}{1}=\frac{y}{3}\Rightarrow\frac{x}{4}=\frac{y}{12}\)

\(5y=4z\Rightarrow\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)

=> \(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tc của dãy tỉ số bằng nahu ta có:

\(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}=\frac{6x+7y+8z}{6\cdot4+7\cdot12+8\cdot15}=\frac{456}{228}=2\)

=> \(\begin{cases}x=8\\y=24\\z=30\end{cases}\)

c) Có: \(x-24=y\Rightarrow x-y=24\)

Áp dụng tc của dãy tỉ số bằng nhau ta có:

\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{24}{4}=6\)

=> \(\begin{cases}x=42\\y=18\end{cases}\)

3 tháng 1 2018

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)

=> \(\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\)

=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{\left(2x+3y-z\right)-2-6+3}{9}=\frac{50-5}{9}=\frac{45}{9}\)= 5

=> x-1/2 = 5 => x-1=5 => x=6

y-2/3 = 5 => y-2 = 15 => y =17

z-3/4=5 => z-3=20 => z=23

3 tháng 1 2018

Đặt x/2=y/3=z/5=k => x=2k,y=3k,z=5k

Ta có: xyz=2k.3k.5k=30k3 = 810 => k3 = 27 => k=3

=> x=2.3=6

y=3.3=9

z=5.3=15