K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2016

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)=> a = b ; b = c ; c = a => a = b = c

Đặt a/b = b/c = c/a = k thì a = bk ; b = ck ; c = ak

=> a = bk = ck.k = ak.k2 = ak3 => 1 = k3 => k = 1 => a = b ; b = c ; c = a => a = b = c

6 tháng 8 2016

Cách 1: Áp dụng tính chất của dãy tỉ số ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)

=> a = b = c (đpcm)

Cách 2: Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=k\)

=> \(k^3=\frac{a}{b}.\frac{b}{c}.\frac{c}{a}=1=1^3\)

=> k = 1

=> a = b = c (đpcm)

1 tháng 1 2018

Câu 1 : 

ad=bc => a/b=c/d ( a,b,c,d khác 0 )

=> b/a=d/c

=> 1-b/a=1-d/c

=> a-b/a=c-d/c 

=> a/a-b=c/c-d

=> ĐPCM

Câu 2 : 

Đk để phân số tồn tại là a,b,c khác 0

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

a/b=b/c=c/a=a+b+c/a+b+c=1

=> a=b;b=c;c=a => a=b=c

Khi đó : a^2+b^2+c^2/(a+b+c)^2 = a^2+a^2+a^2/(a+a+a)^2 = 3a^2/9a^2=1/3

=> ĐPCM

k mk nha

1 tháng 1 2018

câu 2 : là (a+b+c)^2 nha mn mình nhầm

22 tháng 10 2019

Cách 1:

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)

Cách 2:

16 tháng 10 2015

C2: Đặt \(\frac{a}{b}.\frac{c}{d}=k=>a=bk,c=dk\)

=>\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2.k}{d^2.k}=\frac{b^2}{d^2}\)

\(\frac{a^2-b^2}{c^2-d^2}=\frac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\frac{b^2.k^2-b^2}{d^2.k^2-d^2}=\frac{b^2.\left(k^2-1\right)}{d^2.\left(k^2-1\right)}=\frac{b^2}{d^2}\)

=>\(\frac{ab}{cd}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)

=>\(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)

 

16 tháng 10 2015

\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}=>\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{b}{d}=>\frac{a^2}{c^2}=\frac{ab}{cd}\)

\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}=>\frac{b}{d}.\frac{b}{d}=\frac{a}{c}.\frac{b}{d}=>\frac{b^2}{d^2}=\frac{ab}{cd}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

=>\(\frac{ab}{cd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)

=>\(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)

30 tháng 9 2018

\(\frac{a}{b}=\frac{c}{d}=>\frac{ad}{bd}=\frac{bc}{bd}\)

\(\frac{a-b}{b}=\frac{\left(a-b\right).d}{b.d}=\frac{ad-bd}{bd}\)

\(\frac{c-d}{d}=\frac{\left(c-d\right).b}{b.d}=\frac{cb-bd}{bd}\)

Vì ad=bc=>\(\frac{a-b}{b}=\frac{c-d}{d}\)

16 tháng 7 2015

Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt;c=dt\)

Thay vào từng vế ta có 

     \(\frac{a.b}{c.d}=\frac{bt.b}{dt.d}=\frac{b^2.t}{d^2.t}=\frac{b^2}{d^2}\) (1)

     \(\frac{\left(bt+b\right)^2}{\left(dt+d\right)^2}=\frac{b^2\left(t+1\right)^2}{d^2\left(t+1\right)^2}=\frac{b^2}{d^2}\) (2)

Từ (1) và (2) => ĐPCM

23 tháng 9 2017

a/b=c/d 
=> a/c = b/d
Áp dụng tính chất dãy tỉ số bằng nhau có : 
a/c = b/d = a+b/c+d
=> (a/c)mũ 2 = (b/d)mũ 2 = a/c.b/d= ( a+b/c+d ) mũ 2 
=>   a/c.b/d= ( a+b/c+d ) mũ 2 
=> a.b/c.d = (a+b)mũ 2 / (c + d ) mũ 2 
=> dpcm