K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2016

\(D=\frac{2!}{3!}+\frac{2!}{4!}+\frac{2!}{5!}+...+\frac{2!}{n!}\)

\(D=2!.\left(\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+...+\frac{1}{n!}\right)< 2!.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{\left(n-1\right).n}\right)\)

\(D< 2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)

\(D< 2.\left(\frac{1}{2}-\frac{1}{n}\right)< 2.\frac{1}{2}=1\)

=> D < 1 (đpcm)

6 tháng 3 2018

Bạn tham khảo nhé, nếu có sai chỗ nào thì bạn sửa giùm mình 

Ta có : 

\(A=\frac{2!}{3!}+\frac{2!}{4!}+\frac{2!}{5!}+...+\frac{2!}{n!}\)

\(A=2!\left(\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+...+\frac{1}{n!}\right)< 2!\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{\left(n-1\right)n}\right)\)

\(A< 2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)

\(A< 2\left(\frac{1}{2}-\frac{1}{n}\right)\)

\(A< 1-\frac{2}{n}=\frac{n}{n}-\frac{2}{n}=\frac{n-2}{n}< 1\) ( tử bé hơn mẫu ) 

Vậy \(A< 1\)

Chúc bạn học tốt ~

13 tháng 4 2019

Akaima Việt LâmMinh

13 tháng 4 2019

Ông ko lm đk thì sao mà tôi làm được nhỉ???

19 tháng 4 2017

A > B

- Ủng hộ -

19 tháng 4 2017

\(A=B\)

Đúng 100% 

Đúng 100%

Đúng 100%

25 tháng 3 2018

\(a)\) Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2010^2}\) ta có : 

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)

\(A< 1-\frac{1}{2010}=\frac{2009}{2010}< 1\)

\(\Rightarrow\)\(A< 1\) ( đpcm ) 

Vậy \(A< 1\)

Chúc bạn học tốt ~ 

30 tháng 3 2017

Khó dữ vậy!!!!

6 tháng 5 2017

Đợi tí , mạng chậm