\(A=\frac{2!}{3!}+\frac{2!}{4!}+\frac{2!}{5!}+...+\frac{2!}{n!}< 1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2018

Bạn tham khảo nhé, nếu có sai chỗ nào thì bạn sửa giùm mình 

Ta có : 

\(A=\frac{2!}{3!}+\frac{2!}{4!}+\frac{2!}{5!}+...+\frac{2!}{n!}\)

\(A=2!\left(\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+...+\frac{1}{n!}\right)< 2!\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{\left(n-1\right)n}\right)\)

\(A< 2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)

\(A< 2\left(\frac{1}{2}-\frac{1}{n}\right)\)

\(A< 1-\frac{2}{n}=\frac{n}{n}-\frac{2}{n}=\frac{n-2}{n}< 1\) ( tử bé hơn mẫu ) 

Vậy \(A< 1\)

Chúc bạn học tốt ~

25 tháng 2 2017

2.a) Vào question 126036

b) Vào question 68660

25 tháng 3 2018

\(a)\) Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2010^2}\) ta có : 

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)

\(A< 1-\frac{1}{2010}=\frac{2009}{2010}< 1\)

\(\Rightarrow\)\(A< 1\) ( đpcm ) 

Vậy \(A< 1\)

Chúc bạn học tốt ~ 

13 tháng 3 2018

=1−12 +13 −14 +15 −16 +...+149 −150. A =(1+13 +15 +...+149 )−(12 +14 +16 +...+150 ).

A =(1+12 +13 +14 +15 +16 +...+149 ...

.........

30 tháng 3 2017

Khó dữ vậy!!!!

6 tháng 5 2017

Đợi tí , mạng chậm