Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, S = 1 + 2 + 22 + 23 + ... + 22017
Ta có : 2S = 2 + 22 + 23 +.... + 22018
Lấy 2S - S ta được : S = 22018 - 1
b, Đặt S = 3 + 32 + 33 + ... + 32017
Ta có : 3S = 32 + 33 + ... + 32018
Lấy 3S - S ta được 2S = 32018 -3
=> \(S=\frac{3^{2018}-3}{2}\)
c, Đặt S = 4 + 42 + 43 + ... + 42017
Ta có : 4S = 42 + 43 + ... + 42018
Lấy 4S - S ta được 3S = 42018 - 4
=> \(S=\frac{4^{2018}-4}{3}\)
a, S = 1 + 2 + 22 + 23 + ... + 22017
Ta có : 2S = 2 + 22 + 23 +.... + 22018
Lấy 2S - S ta được : S = 22018 - 1
b, Đặt S = 3 + 32 + 33 + ... + 32017
Ta có : 3S = 32 + 33 + ... + 32018
Lấy 3S - S ta được 2S = 32018 -3
=>
c, Đặt S = 4 + 42 + 43 + ... + 42017
Ta có : 4S = 42 + 43 + ... + 42018
Lấy 4S - S ta được 3S = 42018 - 4
=>
\(a)\) \(S=1+2+2^2+2^3+...+2^{2017}\)
\(2S=2+2^2+2^3+2^4+...+2^{2018}\)
\(2S-S=\left(2+2^2+2^3+2^4+...+2^{2018}\right)-\left(1+2+2^2+2^3+...+2^{2017}\right)\)
\(S=2^{2018}-1\)
\(b)\) \(S=3+3^2+3^3+...+3^{2017}\)
\(3S=3^2+3^3+3^4+...+3^{2018}\)
\(3S-S=\left(3^2+3^3+3^4+...+3^{2018}\right)-\left(3+3^2+3^3+...+3^{2017}\right)\)
\(2S=3^{2018}-3\)
\(S=\frac{3^{2018}-3}{2}\)
\(c)\) \(S=4+4^2+4^3+...+4^{2017}\)
\(4S=4^2+4^3+4^4+...+4^{2018}\)
\(4S-S=\left(4^2+4^3+4^4+...+4^{2018}\right)-\left(4+4^2+4^3+...+4^{2017}\right)\)
\(3S=4^{2018}-4\)
\(S=\frac{4^{2018}-4}{3}\)
\(d)\) \(S=5+5^2+5^3+...+5^{2017}\)
\(5S=5^2+5^3+5^4+...+5^{2018}\)
\(5S-S=\left(5^2+5^3+5^4+...+5^{2018}\right)-\left(5+5^2+5^3+...+5^{2017}\right)\)
\(4S=5^{2018}-5\)
\(S=\frac{5^{2018}-5}{2}\)
Chúc em học tốt ~
( 1-1/2) . (1-1/3).(1-1/4).......(1-1/2016) . (1-1/2017)
=1/2.2/3.3.4x...x2015/2016.2016/2017
=1.2.3.4. ... .2015.2016/2.3.4.5. ... .2016.2017
(giống nhau you gạch đi )
=1/2017
\(S=1+2+...+2^{2017}\)
\(2S=2+2^2+...+2^{2018}\)
\(2S-S=2+2^2+...+2^{2018}-1-2-...-2^{2017}\)
\(S=2^{2018}-1\)
\(S=3+3^2+...+3^{2017}\)
\(3S=3^2+3^3+...+3^{2018}\)
\(3S-S=3^2+3^3+...+3^{2018}-3-3^2-...-3^{2017}\)
\(2S=3^{2018}-3\)
\(S=\dfrac{3^{2018}-3}{2}\)
\(S=4+4^2+...+4^{2017}\)
\(4S=4^2+4^3+...+4^{2018}\)
\(4S-S=4^2+4^3+...+4^{2018}-4-4^2-...-4^{2017}\)
\(3S=4^{2018}-4\)
\(S=\dfrac{4^{2018}-4}{3}\)
\(S=5+5^2+...+5^{2017}\)
\(5S=5^2+5^3+...+5^{2018}\)
\(5S-S=5^2+5^3+...+5^{2018}-5-5^2-...-5^{2017}\)
\(4S=5^{2018}-5\)
\(S=\dfrac{5^{2018}-5}{4}\)
a) S=1+2+22+...+22017
=> 2S=2.(1+2+22+...+22017)
=>2S=2+22+23+...+22018
=>S=(2+22+23+ ..+22018) - (1+2+22+ ....+22017 )
=> S =22018-1
Nếu đầu bài là: c=1*2+2*3+3*4+.....+2016*2017
Ta có: 3C = 1*2*(3-0) + 2*3*(4-1) + ..... + 2016*2017*(2018 - 2015)
3C = 1*2*3 - 1*2*3 + 2*3*4 - 2*3*4 + ..... +2016*2017*2018
3C = 2016*2017*2018
ban oi cau hoi la
c= 1*2+2*3+3*4+....+16*17