K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2016

\(S=\frac{3}{2}+\frac{5}{4}+\frac{9}{8}+\frac{17}{16}+\frac{33}{32}+\frac{65}{64}-7\)

\(S=1+\frac{1}{2}+1+\frac{1}{4}+1+\frac{1}{8}+1+\frac{1}{16}+1+\frac{1}{32}+1+\frac{1}{64}-7\)

\(S=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}-1\)

\(S+1=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}\)

\(2\left(S+1\right)=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}\)

\(2\left(S+1\right)-\left(S+1\right)=S+1=1-\frac{1}{2^6}=\frac{63}{64}\)

\(S=\frac{63}{64}-1\)

21 tháng 7 2017

\(S=\frac{3}{2}+\frac{5}{4}+\frac{9}{8}+\frac{17}{16}+\frac{33}{32}+\frac{65}{64}-7\)

\(S=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{4}\right)+\left(1+\frac{1}{8}\right)+\left(1+\frac{1}{16}\right)+\left(1+\frac{1}{32}\right)+\left(1+\frac{1}{64}\right)-7\)

\(S=\left(1+1+....+1\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{64}\right)-7\)

\(S=6+\left[\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+....+\left(\frac{1}{32}-\frac{1}{64}\right)\right]-7\)

\(S=6+\left(1-\frac{1}{64}\right)-7\)

\(S=6+\frac{63}{64}-7\)

\(S=\frac{447}{64}-7=-\frac{1}{64}\)

21 tháng 7 2017

s=1,5+1,25+1,125+1,0625+1,03125+1,015625-7=-0,015625

4 tháng 7 2019

\(\frac{\frac{1}{3}+\frac{1}{7}-\frac{1}{17}}{\frac{2}{3}+\frac{2}{7}-\frac{2}{17}}.\frac{\frac{3}{4}-\frac{3}{16}+\frac{3}{256}-\frac{3}{4}}{1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}}-\frac{-5}{8}\)

\(\frac{1.\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{17}\right)}{2.\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{17}\right)}.\frac{3.\left(\frac{1}{4}-\frac{1}{16}-\frac{1}{256}+\frac{1}{4}\right)}{1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}}+\frac{5}{8}\)

\(\frac{1}{2}.\left(\frac{3.\left(\frac{3}{4}+\frac{63}{256}\right)}{\frac{3}{4}+\frac{3}{64}}\right)+\frac{5}{8}\)

\(\frac{1}{2}.\left(\frac{3.\left(\frac{3}{4}+\frac{63}{256}\right)}{\frac{3}{4}+\frac{12}{256}}\right)+\frac{5}{8}\)

\(\frac{1}{2}.\left(\frac{3.3.\left(\frac{1}{4}+\frac{21}{256}\right)}{3.\left(\frac{1}{4}+\frac{1}{64}\right)}\right)+\frac{5}{8}\)

\(\frac{1}{2}.\left(\frac{3.\left(\frac{1}{4}+\frac{1}{64}+\frac{17}{256}\right)}{\frac{1}{4}+\frac{1}{64}}\right)+\frac{5}{8}\)

\(\frac{1}{2}.\left(\frac{3.\left(\frac{1}{4}+\frac{1}{64}\right)+3.\frac{17}{256}:\left(\frac{1}{4}+\frac{1}{64}\right)}{1.\left(\frac{1}{4}+\frac{1}{64}\right)}\right)+\frac{5}{8}\)

\(\frac{1}{2}.\left(3+\frac{51}{256}:\frac{17}{64}\right)+\frac{5}{8}\) 

\(\frac{1}{2}.\left(3+\frac{3}{4}\right)+\frac{5}{8}\)

\(\frac{1}{2}.\frac{15}{4}+\frac{5}{8}\)

\(\frac{15}{8}+\frac{5}{8}\)

\(\frac{5}{2}\)

4 tháng 7 2019

\(\frac{\frac{1}{3}+\frac{1}{7}-\frac{1}{17}}{\frac{2}{3}+\frac{2}{7}-\frac{2}{17}}.\frac{\frac{3}{4}-\frac{3}{16}-\frac{3}{256}+\frac{3}{4}}{1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}}-\frac{-5}{8}\)

\(=\frac{\frac{1}{3}+\frac{1}{7}-\frac{1}{17}}{2.\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{17}\right)}.\frac{\frac{3}{4}-\frac{3}{16}-\frac{3}{256}+\frac{3}{4}}{1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}}+\frac{5}{8}\)

\(=\frac{1}{2}.\frac{111}{68}+\frac{5}{8}\)

\(=\frac{49}{34}\)

4 tháng 7 2018

đề bài là gì vậy bạn

17 tháng 12 2016

a) \(\frac{17}{9}-\frac{17}{9}:\left(\frac{7}{3}+\frac{1}{2}\right)\)

= \(\frac{17}{9}-\frac{17}{9}:\frac{17}{6}\)

= \(\frac{17}{9}-\frac{2}{3}\)

= \(\frac{11}{9}\)

b) \(\frac{4}{3}.\frac{2}{5}-\frac{3}{4}.\frac{2}{5}\)

= \(\frac{2}{5}.\left(\frac{4}{3}-\frac{3}{4}\right)\)

= \(\frac{2}{5}.\frac{7}{12}\)

= \(\frac{7}{30}\)

Mình lười làm quá, hay mình nói kết quả cho bn thôi nha

c) -6

d) 3

e) 3

g) 12

h) \(\frac{23}{18}\)

i) \(\frac{-69}{20}\)

k) \(\frac{-1}{2}\)

l) \(\frac{49}{5}\)

4 tháng 10 2021

yutyugubhujyikiu

10 tháng 8 2020

\(S=1+\frac{1}{2}+1+\frac{1}{4}+1+\frac{1}{8}+1+\frac{1}{16}+1+\frac{1}{32}+1+\frac{1}{64}-7\)

\(S=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}-1\)

Ta đặt:    \(P=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)

=> \(2P=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)

=> \(2P-P=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\right)\)

=> \(P=1-\frac{1}{64}\)

Mà    \(S=P-1\)

=> \(S=1-\frac{1}{64}-1=-\frac{1}{64}\)

Vậy \(S=-\frac{1}{64}\)