Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{3}{2}+\frac{5}{4}+\frac{9}{8}+\frac{17}{16}+\frac{33}{32}+\frac{65}{64}-7\)
\(S=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{4}\right)+\left(1+\frac{1}{8}\right)+\left(1+\frac{1}{16}\right)+\left(1+\frac{1}{32}\right)+\left(1+\frac{1}{64}\right)-7\)
\(S=\left(1+1+....+1\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{64}\right)-7\)
\(S=6+\left[\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+....+\left(\frac{1}{32}-\frac{1}{64}\right)\right]-7\)
\(S=6+\left(1-\frac{1}{64}\right)-7\)
\(S=6+\frac{63}{64}-7\)
\(S=\frac{447}{64}-7=-\frac{1}{64}\)
\(\frac{\frac{1}{3}+\frac{1}{7}-\frac{1}{17}}{\frac{2}{3}+\frac{2}{7}-\frac{2}{17}}.\frac{\frac{3}{4}-\frac{3}{16}+\frac{3}{256}-\frac{3}{4}}{1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}}-\frac{-5}{8}\)
= \(\frac{1.\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{17}\right)}{2.\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{17}\right)}.\frac{3.\left(\frac{1}{4}-\frac{1}{16}-\frac{1}{256}+\frac{1}{4}\right)}{1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}}+\frac{5}{8}\)
= \(\frac{1}{2}.\left(\frac{3.\left(\frac{3}{4}+\frac{63}{256}\right)}{\frac{3}{4}+\frac{3}{64}}\right)+\frac{5}{8}\)
= \(\frac{1}{2}.\left(\frac{3.\left(\frac{3}{4}+\frac{63}{256}\right)}{\frac{3}{4}+\frac{12}{256}}\right)+\frac{5}{8}\)
= \(\frac{1}{2}.\left(\frac{3.3.\left(\frac{1}{4}+\frac{21}{256}\right)}{3.\left(\frac{1}{4}+\frac{1}{64}\right)}\right)+\frac{5}{8}\)
= \(\frac{1}{2}.\left(\frac{3.\left(\frac{1}{4}+\frac{1}{64}+\frac{17}{256}\right)}{\frac{1}{4}+\frac{1}{64}}\right)+\frac{5}{8}\)
= \(\frac{1}{2}.\left(\frac{3.\left(\frac{1}{4}+\frac{1}{64}\right)+3.\frac{17}{256}:\left(\frac{1}{4}+\frac{1}{64}\right)}{1.\left(\frac{1}{4}+\frac{1}{64}\right)}\right)+\frac{5}{8}\)
= \(\frac{1}{2}.\left(3+\frac{51}{256}:\frac{17}{64}\right)+\frac{5}{8}\)
= \(\frac{1}{2}.\left(3+\frac{3}{4}\right)+\frac{5}{8}\)
= \(\frac{1}{2}.\frac{15}{4}+\frac{5}{8}\)
= \(\frac{15}{8}+\frac{5}{8}\)
= \(\frac{5}{2}\)
\(\frac{\frac{1}{3}+\frac{1}{7}-\frac{1}{17}}{\frac{2}{3}+\frac{2}{7}-\frac{2}{17}}.\frac{\frac{3}{4}-\frac{3}{16}-\frac{3}{256}+\frac{3}{4}}{1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}}-\frac{-5}{8}\)
\(=\frac{\frac{1}{3}+\frac{1}{7}-\frac{1}{17}}{2.\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{17}\right)}.\frac{\frac{3}{4}-\frac{3}{16}-\frac{3}{256}+\frac{3}{4}}{1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}}+\frac{5}{8}\)
\(=\frac{1}{2}.\frac{111}{68}+\frac{5}{8}\)
\(=\frac{49}{34}\)
a) \(\frac{17}{9}-\frac{17}{9}:\left(\frac{7}{3}+\frac{1}{2}\right)\)
= \(\frac{17}{9}-\frac{17}{9}:\frac{17}{6}\)
= \(\frac{17}{9}-\frac{2}{3}\)
= \(\frac{11}{9}\)
b) \(\frac{4}{3}.\frac{2}{5}-\frac{3}{4}.\frac{2}{5}\)
= \(\frac{2}{5}.\left(\frac{4}{3}-\frac{3}{4}\right)\)
= \(\frac{2}{5}.\frac{7}{12}\)
= \(\frac{7}{30}\)
Mình lười làm quá, hay mình nói kết quả cho bn thôi nha
c) -6
d) 3
e) 3
g) 12
h) \(\frac{23}{18}\)
i) \(\frac{-69}{20}\)
k) \(\frac{-1}{2}\)
l) \(\frac{49}{5}\)
Câu 1;
\(\frac{\frac{1}{3}-\frac{1}{7}-\frac{1}{13}}{\frac{2}{3}-\frac{2}{7}-\frac{2}{13}}\cdot\frac{\frac{3}{4}-\frac{3}{16}-\frac{3}{64}-\frac{3}{256}}{1-\frac{1}{4}-\frac{1}{16}-\frac{1}{64}}+\frac{5}{8}\)
\(=\frac{\frac{1}{3}-\frac{1}{7}-\frac{1}{13}}{2\left(\frac{1}{3}-\frac{1}{7}-\frac{1}{13}\right)}\cdot\frac{3\left(\frac{1}{4}-\frac{1}{16}-\frac{1}{64}-\frac{1}{256}\right)}{4\left(\frac{1}{4}-\frac{1}{16}-\frac{1}{64}-\frac{1}{256}\right)}+\frac{5}{8}\)
\(=\frac{1}{2}\cdot\frac{3}{4}+\frac{5}{8}=\frac{3}{8}+\frac{5}{8}=1\)
Câu 2:
\(\frac{0,75-0,6+\frac{3}{7}+\frac{3}{13}}{2,75-2,2+\frac{11}{7}+\frac{11}{3}}=\frac{\frac{3}{4}-\frac{3}{5}+\frac{3}{7}+\frac{3}{13}}{\frac{11}{4}-\frac{11}{5}+\frac{11}{7}+\frac{11}{3}}=\frac{3\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{7}+\frac{1}{13}\right)}{11\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{7}+\frac{1}{13}\right)}=\frac{3}{11}\)
Câu 1;
13 −17 −113 23 −27 −213 ·34 −316 −364 −3256 1−14 −116 −164 +58
=13 −17 −113 2(13 −17 −113 ) ·3(14 −116 −164 −1256 )4(14 −116 −164 −1256 ) +58
=12 ·34 +58 =38 +58 =1
Câu 2:
\(S=\frac{3}{2}+\frac{5}{4}+\frac{9}{8}+\frac{17}{16}+\frac{33}{32}+\frac{65}{64}-7\)
\(S=1+\frac{1}{2}+1+\frac{1}{4}+1+\frac{1}{8}+1+\frac{1}{16}+1+\frac{1}{32}+1+\frac{1}{64}-7\)
\(S=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}-1\)
\(S+1=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}\)
\(2\left(S+1\right)=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}\)
\(2\left(S+1\right)-\left(S+1\right)=S+1=1-\frac{1}{2^6}=\frac{63}{64}\)
\(S=\frac{63}{64}-1\)