Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ab+bc+ca \(\le\) a^2+b^2+c^2
<=> a^2+b^2+c^2-ab-bc-ca \(\ge\) 0
<=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca \(\ge\) 0
<=> (a^2+b^2-2ab) + (b^2+c^2-2bc) + (c^2+a^2-2ca) \(\ge\)0
<=> (a-b)^2 + (b-c)^2 + (c-a)^2 \(\ge\)0, luôn đúng
a^2+b^2+c^2 < 2(ab+bc+ca)
<=> a^2+b^2+c^2-2ab-2bc-2ca < 0
<=> (a^2+b^2-2ab) + (b^2+c^2-2bc) + (c^2+a^2-2ca) - a^2 - b^2 - c^2 < 0
<=> (a-b)^2 + (b-c)^2 + (c-a)^2 - a^2 - b^2 - c^2 < 0, luôn đúng
Ta co đpcm
a,b,c > 0
Áp dụng bđt AM-GM : a2+b2 \(\ge\) 2ab , b2+c2 \(\ge\) 2bc , c2+a2 \(\ge\) 2ca
Cộng theo vế : 2(a2+b2+c2) \(\ge\) 2(ab+bc+ac) => a2+b2+c2 \(\ge\) ab+bc+ca
theo bđt tam giác : a+b > c =>c(a+b) > c2 =>ac+bc > c2
b+c>a => ab+ac > a2,a+c > b=>ab+bc > b2
Cộng theo vế : 2(ab+bc+ac) > a2+b2+c2
(a+b+c)^2=1
a^2+b^2+c^2+2ab+2bc+2ac=1
2ab+2bc+2ac=1-(a^2+b^2+c^2)<=1
ab+bc+ac<=1/2
+ \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)
\(\Rightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)
\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Rightarrow ab+b+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)
\(\Rightarrow ab+bc+ca< \frac{1}{2}\)
Cảm ơn đã trả lời nhưng mong bạn trình bày vs trình độ lớp 8
Đề nghị bạn đánh đề kỹ hơn!!
\(\frac{1}{a^2+b^2+1}+\frac{1}{b^2+c^2+1}+\frac{1}{c^2+a^2+1}\le1\) với $a,b,c>0; ab+bc+ca=3$
\(\text{VP}-\text{VT}= \sum{\frac { \left( a-b \right) ^{2} \Big\{ c \left( 9\,{a}^{2}b+4 \,c{a}^{2}+9\,a{b}^{2}+4\,{b}^{2}c+16\,{c}^{3} \right) +3ab \Big\} }{27 \left( {a}^{2}+{b}^{2}+1 \right) \left( {b}^{2}+{c}^{2}+ 1 \right) \left( {a}^{2}+{c}^{2}+1 \right) }} \geqq 0\)
PS: Bài này quá tầm thường với SOS:v
<=>2ab+2bc+2ca<=1=1^2=(a+b+c)^2
<=>a^2+b^2+c^2+2ab+2bc+2ca>=2ab+2bc+2ca
<=>a^2+b^2+c^2>=0
a,b,c khong dong thoi =0
=> dang thuc khong xay ra
=> ab+bc+ca<1/2=>dpcm
(a+b+c)=1
a^2+b^2+c^2+2ab+2bc+2ca=1
a^^2+b^2+c^2>=0
=>2ab+2bc+2ca<=1
Đẳng thức khi (a+b+c=1 &0=> vô nghiệm
=> 2ab+2bc+2ca<1
=>ab+2bc+2ca<1/2
=>đpcm