Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất : \(\left|A\right|\ge A\) dấu "=" xảy ra khi \(A\ge0\)
Ta có: \(\left|x-\frac{2}{3}\right|\ge x-\frac{2}{3}\Rightarrow-\left|x-\frac{2}{3}\right|\le-x+\frac{2}{3}\)
=> \(B=x+\frac{1}{2}-\left|x-\frac{2}{3}\right|\le x+\frac{1}{2}-x+\frac{2}{3}=\frac{7}{6}\)
Dấu "=" xảy ra khi và chỉ khi: \(x-\frac{2}{3}\ge0\Leftrightarrow x\ge\frac{2}{3}\)
Vậy Giá trị lớn nhất của B là 7/6 khi \(x\ge\frac{2}{3}\)
Câu 1 mình nghĩ nó khá đơn giản rồi, bạn tính ra ngay thôi
Câu 2: Mình nghĩ là tìm min chứ ko phải max
Vì \(\left(-\frac{2}{3}+\frac{1}{2}x\right)^2\ge0\Rightarrow A=\left(-\frac{2}{3}+\frac{1}{2}x\right)^2-2,5\ge2,5\)
\(\Rightarrow A_{min}=2,5\Leftrightarrow\left(-\frac{2}{3}+\frac{1}{2}x\right)^2=0\Leftrightarrow-\frac{2}{3}+\frac{1}{2}x=0\Leftrightarrow\frac{1}{2}x=\frac{2}{3}\Leftrightarrow x=\frac{4}{3}\)
A đạt giá trị nhỏ nhất là 2,5 khi x=4/3
Câu 3:
\(x=\frac{26}{7+b}\) âm khi 7+b âm <=> 7+b<0 <=> b<-7
vì b là số nguyên lớn nhất nên b=-8
a) \(A=\left|x-\frac{2}{3}\right|-4\)
Có: \(\left|x-\frac{2}{3}\right|\ge0\)
\(\Rightarrow\left|x-\frac{2}{3}\right|-4\ge-4\)
Dấu '=' xảy ra khi: \(\left|x-\frac{2}{3}\right|=0\Rightarrow x=\frac{2}{3}\)
Vậy: \(Min_A=-4\) tại \(x=\frac{2}{3}\) ( K có GTLN bạn nhé )
b) \(B=2-\left|x+\frac{5}{6}\right|\) . Có: \(\left|x+\frac{5}{6}\right|\ge0\)
\(\Rightarrow2-\left|x+\frac{5}{6}\right|\le2\)
Dấu '=' xảy ra khi: \(\left|x+\frac{5}{6}\right|=0\Rightarrow x=-\frac{5}{6}\)
Vậy: \(Max_B=2\) tại \(x=-\frac{5}{6}\)
\(C=-\left|x+\frac{2}{3}\right|-4\). Có: \(-\left|x+\frac{2}{3}\right|\le0\)
\(\Rightarrow-\left|x+\frac{2}{3}\right|-4\le-4\)
Dấu '=' xảy ra khi: \(-\left|x+\frac{2}{3}\right|=0\Rightarrow x=-\frac{2}{3}\)
Vậy: \(Max_C=-4\) tại \(x=-\frac{2}{3}\)
a) Vì \(A=2-\left|x+\frac{5}{6}\right|\le2-0=2\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|x+\frac{5}{6}\right|=0\Rightarrow x=-\frac{5}{6}\)
Vậy Max(A) = 2 khi \(x=-\frac{5}{6}\)
b) Vì \(B=5-\left|\frac{2}{3}-x\right|\le5-0=5\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|\frac{2}{3}-x\right|=0\Rightarrow x=\frac{2}{3}\)
Vậy Max(B) = 5 khi \(x=\frac{2}{3}\)
\(A=3x^3-6x^2+2\left|x\right|+7\) với \(x=-\frac{1}{3}\)
Thay \(x=-\frac{1}{3}\) vào A, ta có:
\(A=3.\left(-\frac{1}{3}\right)^3-6.\left(-\frac{1}{3}\right)^2+2.\left|-\frac{1}{3}\right|+7\)
\(A=\left(-\frac{1}{9}\right)-\frac{2}{3}+\frac{2}{3}+7\)
\(A=\frac{62}{9}\)
\(B=4\left|x\right|-2\left|y\right|\) với \(x=\frac{1}{4};y=-2\)
\(B=4.\left|\frac{1}{4}\right|-2.\left|-2\right|\)
\(B=1-4\)
\(B=-3\)
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)
Vì /x-2/3/>=0
suy ra x =2/3
vậy ta có : 2/3+1/2 -0=7/6