K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2016

\(\Leftrightarrow x^2-y^2=16\)

\(\Leftrightarrow\left(x-y\right)\cdot\left(x+y\right)=16\)

XONG LẬP BẢNG LÀ RA 

6 tháng 1 2016

nghiệm nguyên bn ạ! giải giúp tớ vs!

6 tháng 1 2016

chán quá! mai phải nộp bt cho cô rùi nhg ko biết lm!

7 tháng 1 2016

sao dùng đc! nhg thui tui giải đc bài này rùi! cảm ơn bn đã nhắc! :))

9 tháng 11 2017

b) Do \(13x^2\ge0\)nên \(24y^2\le2015\)

\(\Rightarrow y^2\le83\)

Đến đây xét các trường hợp của y là được

9 tháng 11 2017

a)  http://olm.vn/hoi-dap/question/1058362.html

22 tháng 4 2020

Pt có nghiệm=>\(\Delta^'\ge0\)

=>9-2(m-2)≥0 

=>13-2m≥0

=>m≤\(\frac{13}{2}\)

Theo Viet ta có:\(\hept{\begin{cases}x_1+x_2=3\\x_1x_2=\frac{m-2}{2}\end{cases}}\)

Khi đó:\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=11-m\)

=>\(A\ge11-\frac{13}{2}=\frac{9}{2}\)

Vậy...

10 tháng 5 2020

có ai không 

10 tháng 5 2020

ai làm được thì tích

9 tháng 4 2020

Đống này xong r, ko k bất cứ ai trl nx nhé

9 tháng 4 2020

Không ai rảnh bạn nha!!!!

13 tháng 8 2019

\(\left(x,y\right)\rightarrow\left(a,b\right)\)

\(+,a=0\Rightarrow b^2=b\Leftrightarrow a^2=a\Rightarrow\left[{}\begin{matrix}a=0\\a=1\end{matrix}\right.\)

\(tt:b=0\Rightarrow\left[{}\begin{matrix}a=1\\a=0\end{matrix}\right.\)

\(+,a;b\ne0\Rightarrow a^2\ge a;b^2\ge b\left("="\Leftrightarrow a=1;b=1\right)ma:a^2+b^2=a+b\Rightarrow a=b=1\)

vậy:..

13 tháng 8 2019

a strange way to solve...

1) \(x^2+y^2=x+y\)

\(\Leftrightarrow x^2-x+y^2-y=0\)

Coi phương trình trên là pt bậc 2 với ẩn là x.

+) Xét \(x=0\Leftrightarrow y=0\)( thỏa )

+) Xét \(x\ne0\)

Để pt có nghiệm thì \(\Delta\ge0\)

\(\Leftrightarrow1^2-4\left(y^2-y\right)\ge0\)

\(\Leftrightarrow1-4y^2+4y\ge0\)

\(\Leftrightarrow4y^2-4y-1\le0\)

\(\Leftrightarrow\left(2y-1\right)^2\le2\)

\(\Leftrightarrow0\le\left(2y-1\right)^2\le2\)

Vì y nguyên nên \(2y-1\) nguyên

Do đó \(\left(2y-1\right)^2\in\left\{0;1\right\}\)

\(\Leftrightarrow2y-1\in\left\{0;1\right\}\)

\(\Leftrightarrow\left[{}\begin{matrix}y=\frac{1}{2}\left(loai\right)\\y=1\left(thoa\right)\end{matrix}\right.\)

Khi \(y=1\) ta có \(pt\Leftrightarrow x^2+1=x+1\)

\(\Leftrightarrow x^2-x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loai\right)\\x=1\left(chon\right)\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left\{\left(0;0\right);\left(1;1\right);\left(0;1\right);\left(1;0\right)\right\}\)

Hết nghiệm chưa ?

7 tháng 4 2020

Đề bài 1 có nhầm chỗ nào không bạn ???

Bài 3 : 

( x2 + ax + b )( x2 + bx + a ) = 0 \(\Leftrightarrow\orbr{\begin{cases}x^2+ax+b=0\left(^∗\right)\\x^2+bx+a=0\left(^∗^∗\right)\end{cases}}\)

\(\left(^∗\right)\rightarrow\Delta=a^2-4b,\)Để phương trình có nghiệm thì  \(a^2-4b\ge0\Leftrightarrow a^2\ge4b\Leftrightarrow\frac{1}{a}\ge\frac{1}{2\sqrt{b}}\left(3\right)\)

\(\left(^∗^∗\right)\rightarrow\Delta=b^2-4a\), Để phương trình có nghiệm thì \(b^2-4a\ge0\Leftrightarrow\frac{1}{b}\ge\frac{1}{2\sqrt{a}}\left(4\right)\)

Cộng ( 3 ) với ( 4 ) ta có : \(\frac{1}{a}+\frac{1}{b}\ge\frac{1}{2\sqrt{a}}+\frac{1}{2\sqrt{b}}\)

<=> \(\frac{1}{2\sqrt{a}}+\frac{1}{2\sqrt{b}}< \frac{1}{2}\Leftrightarrow\frac{1}{4a}+\frac{1}{4b}< \frac{1}{4}\Leftrightarrow\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)< \frac{1}{4}\Leftrightarrow\frac{1}{8}< \frac{1}{4}\)( luôn luôn đúng với mọi a ,b ) 

7 tháng 4 2020

B3 tui lm đc r, bn lm nhìn rối thế @@ Đề bài ko sai đâu hết nhé bn